The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake...The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake salinity and hydrochemistry are the basis of paleoenvironment reconstruction.The modern hydrochemical characteristics and the relationship between ion composition and salinity of modern lakes are the basis of paleosalinity reconstruction.In this study,hydrochemical analysis of 21 lakes in the Badain Jaran Desert(BJD)was carried out.The relationships between the Sr/Ca and Mg/Ca ratios and total dissolved solids(TDS)were analyzed.The results show that Na^(+),K^(+),Cl-and SO_(4)^(2-)have high positive correlations with TDS,and Mg^(2+),Sr^(2+),CO_(3)_(2-)and HCO_(3)^(-)have lower correlations with TDS.The Sr/Ca and Mg/Ca ratios do not increase linearly with TDS.Hydrochemical analysis indicates that the studied lakes are in the carbonate precipitation stage and that evaporation is the main factor controlling lake evolution in the BJD.The relationships between the Mg/Ca and Sr/Ca ratios and TDS are mainly influenced by lake evolution stage and the hydrochemical types of the lakes.On the basis of comprehensive previous studies,the factors affecting lake evolution,the Mg and Sr partition coefficients and other hydrochemical parameters that change with lake evolution all affect the relationship between chemical composition and salinity.To reconstruct paleosalinity more accurately,more detailed research on the modern hydrochemical characteristics of lakes and the relationship between the element ratios of carbonates and water salinity should be carried out.展开更多
Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the stu...Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.展开更多
The(ultra-)mafic mine tailings pond revealed a weathering discrepancy in the tailings profile,which provided a valuable analog to assess the role of carbonate and silicate weathering of the basalt.In this study,drill-...The(ultra-)mafic mine tailings pond revealed a weathering discrepancy in the tailings profile,which provided a valuable analog to assess the role of carbonate and silicate weathering of the basalt.In this study,drill-cores samples were selected from the Wanniangou V–Ti–Fe mine tailings pond(Sichuan province,China)to investigate the mineralogicand geochemical characteristics in the tailings profile.The results reveal(1)the tailings pond profile consist of upper and lower layers.The upper layer is composed of carbonate weathering(1.4%),which was formed in the initial stages of tailings exposure and represented a minimal weathering degree.(2)The lower layer was primarily observed at the aquifer zone of the tailings pond,and was consistent with 0.45%carbonate weathering and 48.4%silicate weathering.(3)The weathering discrepancy in the tailings profile could be due to the sulfide oxidation and aerobic/flowing aquifer,which facilitate the water-tailings reactions.The tailings profile provides an analog to studying basalt weathering,as it spans both carbonate and silicate weathering.This research reinforces the idea that silicate weathering is predominant in basaltic areas and plays a crucial role in regulating atmospheric CO_(2)(carbon dioxide)levels on Earth.展开更多
With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province...With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province,China.However,effective prevention and control of land subsidence in this region have been challenging due to the lack of comprehensive surface deformations monitoring and the quantitative analysis of the factors driving these deformations.In order to accurately identify the dominant factor driving surface deformations in the study area,this study utilized the Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR)technique to acquire the spatio-temporal distribution of surface deformations from January 2018 to March 2020.The acquired data was verified using leveling data.Subsequently,GIS spatial analysis was employed to investigate the responses of surface deformations to the driving factors.The findings are as follows:Finally,the geographical detector model was utilized to quantify the contributions of the driving factors and reveal the mechanisms of their interactions.The findings are as follows:(1)Surface deformations in the study area are dominated by land subsidence,concentrated mainly in Zhongmu County,with a deformation rate of−12.5–−37.1 mm/a.In contrast,areas experiencing surface uplift are primarily located downtown,with deformation rates ranging from 0 mm to 8 mm;(2)Groundwater level,lithology,and urban construction exhibit strong spatial correlations with cumulative deformation amplitude;(3)Groundwater level of the second aquifer group is the primary driver of spatially stratified heterogeneity in surface deformations,with a contributive degree of 0.5328.The contributive degrees of driving factors are significantly enhanced through interactions.Groundwater level and the cohesive soil thickness in the second aquifer group show the strongest interactions in the study area.Their total contributive degree increases to 0.5722 after interactions,establishing them as the primary factors influencing surface deformation patterns in the study area.The results of this study can provide a theoretical basis and scientific support for precise prevention and control measures against land subsidence in the study area,as well as contributing to research on the underlying mechanisms.展开更多
With the increasing application of germanium(Ge)elements in modern industry,military and medical health industries,especially with the growing demand for Ge-rich agricultural products,the study of Ge-rich soil has bec...With the increasing application of germanium(Ge)elements in modern industry,military and medical health industries,especially with the growing demand for Ge-rich agricultural products,the study of Ge-rich soil has become particularly important,but the enrichment pattern and control factors of Ge-rich soil are still not well understood due to the high dispersion and high migration of Ge-rich soil.In this paper,495 surface soil(0-20 cm)and 149 deep soil(150-200 cm)samples were collected from the northern foothills of Dabie Mountain using a double-layer grid layout,and the spatial distribution and enrichment characteristics of Ge were studied by high-resolution method,and the controlling factors affecting the distribution of Ge-rich soil was analyzed by geo-statistics and spatial analogy.The results show an average Ge content of 1.34 mg/kg for the surface and 1.36 mg/kg for the deep soil.In the assessment grade classification of surface and deep soil for Ge,the abundant and sub-abundant grades account for 37.97%and 31.70%,respectively,covering 752 km2 and 634 km2.Surface Ge-rich regions are distributed in concentrated strips in the north-central part of the studied region,and there is no clear pattern in the spatial distribution of deep soils.In the areas under study,such as Fenlukou,Dingji,and Jiangjiadian,the surface soil is very rich in Ge and has a high enrichment factor,which is valuable for agricultural development.In surface soils,river deposits and shallow metamorphic rock parent materials have the highest content of Ge,while in deep soils,the highest content has been found in the parent material of moderately acidic rock.Both surface and deep soils have the highest Ge content in purple paddy soils and plain areas.The source of Ge in the soils of the study area is most influenced by the lithology of the soil-forming parent material,while the distribution of Ge in the surface soils is jointly influenced by pH,SiO_(2),TFe_(2)O_(3),and Al_(2)O_(3) in the soil.This study has implications for understanding the enrichment pattern of Ge in soil and its controlling factors as well as for the development of Ge-rich agricultural products.展开更多
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including ...Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.展开更多
Hebei Province is rich in geological heritage resources due to its diverse landforms and unique natural conditions.However,detailed investigation and study of the resources are still limited,and a systematic survey co...Hebei Province is rich in geological heritage resources due to its diverse landforms and unique natural conditions.However,detailed investigation and study of the resources are still limited,and a systematic survey conducted on a small scale has not been fully implemented.In this paper,the resource types and characteristics of the geological heritage in Shunping County are systematically discussed,on the basis of field investigation and scientific evaluation.With reference to the existing criteria for geological heritage resources survey,the heritage values and corresponding levels were assessed by using multi-factor quantitative evaluation approach.The results show that there are 33 geological heritage sites in Shunping County,which fall into 3 categories,10 classes and 17 subcategories.Among them,2 heritage sites are above the provincial level,14 heritage sites are at the provincial level and 17 ones are below the level.These heritage sites are not only natural resources with great tourism potential,but also valuable asset in geological research,human history,ecological conservation,scientific education and some other aspects.It is hence of great significance to conduct the scientific and reasonable appraisal for having a better understanding,good protection and development of the geological heritage resources in Hebei Province.展开更多
基金financially supported by the Basic Research Program of Chinese Academy of Geological Sciences(CAGS)(YK202302)the projects of the China Geological Survey(DD20221929,121201106000150093)the National Natural Science Foundation of China(41807420)。
文摘The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake salinity and hydrochemistry are the basis of paleoenvironment reconstruction.The modern hydrochemical characteristics and the relationship between ion composition and salinity of modern lakes are the basis of paleosalinity reconstruction.In this study,hydrochemical analysis of 21 lakes in the Badain Jaran Desert(BJD)was carried out.The relationships between the Sr/Ca and Mg/Ca ratios and total dissolved solids(TDS)were analyzed.The results show that Na^(+),K^(+),Cl-and SO_(4)^(2-)have high positive correlations with TDS,and Mg^(2+),Sr^(2+),CO_(3)_(2-)and HCO_(3)^(-)have lower correlations with TDS.The Sr/Ca and Mg/Ca ratios do not increase linearly with TDS.Hydrochemical analysis indicates that the studied lakes are in the carbonate precipitation stage and that evaporation is the main factor controlling lake evolution in the BJD.The relationships between the Mg/Ca and Sr/Ca ratios and TDS are mainly influenced by lake evolution stage and the hydrochemical types of the lakes.On the basis of comprehensive previous studies,the factors affecting lake evolution,the Mg and Sr partition coefficients and other hydrochemical parameters that change with lake evolution all affect the relationship between chemical composition and salinity.To reconstruct paleosalinity more accurately,more detailed research on the modern hydrochemical characteristics of lakes and the relationship between the element ratios of carbonates and water salinity should be carried out.
基金jointly funded by National Natural Science Foundation of China (41877398)project of the China Geological Survey (DD20221773)。
文摘Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.
基金financially supported by Sichuan Science and Technology Program(No.2023YFS0408)。
文摘The(ultra-)mafic mine tailings pond revealed a weathering discrepancy in the tailings profile,which provided a valuable analog to assess the role of carbonate and silicate weathering of the basalt.In this study,drill-cores samples were selected from the Wanniangou V–Ti–Fe mine tailings pond(Sichuan province,China)to investigate the mineralogicand geochemical characteristics in the tailings profile.The results reveal(1)the tailings pond profile consist of upper and lower layers.The upper layer is composed of carbonate weathering(1.4%),which was formed in the initial stages of tailings exposure and represented a minimal weathering degree.(2)The lower layer was primarily observed at the aquifer zone of the tailings pond,and was consistent with 0.45%carbonate weathering and 48.4%silicate weathering.(3)The weathering discrepancy in the tailings profile could be due to the sulfide oxidation and aerobic/flowing aquifer,which facilitate the water-tailings reactions.The tailings profile provides an analog to studying basalt weathering,as it spans both carbonate and silicate weathering.This research reinforces the idea that silicate weathering is predominant in basaltic areas and plays a crucial role in regulating atmospheric CO_(2)(carbon dioxide)levels on Earth.
基金supported by the China Geological Survey Project(Grant No.DD20189262Grant No.DD20211309)Basic Research Operations Project of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202206).
文摘With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province,China.However,effective prevention and control of land subsidence in this region have been challenging due to the lack of comprehensive surface deformations monitoring and the quantitative analysis of the factors driving these deformations.In order to accurately identify the dominant factor driving surface deformations in the study area,this study utilized the Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR)technique to acquire the spatio-temporal distribution of surface deformations from January 2018 to March 2020.The acquired data was verified using leveling data.Subsequently,GIS spatial analysis was employed to investigate the responses of surface deformations to the driving factors.The findings are as follows:Finally,the geographical detector model was utilized to quantify the contributions of the driving factors and reveal the mechanisms of their interactions.The findings are as follows:(1)Surface deformations in the study area are dominated by land subsidence,concentrated mainly in Zhongmu County,with a deformation rate of−12.5–−37.1 mm/a.In contrast,areas experiencing surface uplift are primarily located downtown,with deformation rates ranging from 0 mm to 8 mm;(2)Groundwater level,lithology,and urban construction exhibit strong spatial correlations with cumulative deformation amplitude;(3)Groundwater level of the second aquifer group is the primary driver of spatially stratified heterogeneity in surface deformations,with a contributive degree of 0.5328.The contributive degrees of driving factors are significantly enhanced through interactions.Groundwater level and the cohesive soil thickness in the second aquifer group show the strongest interactions in the study area.Their total contributive degree increases to 0.5722 after interactions,establishing them as the primary factors influencing surface deformation patterns in the study area.The results of this study can provide a theoretical basis and scientific support for precise prevention and control measures against land subsidence in the study area,as well as contributing to research on the underlying mechanisms.
基金basic scientific research expense of the Institute of Hydrogeology and Environmental Geology,The Survey for Land and Resources(DD20221773-4).
文摘With the increasing application of germanium(Ge)elements in modern industry,military and medical health industries,especially with the growing demand for Ge-rich agricultural products,the study of Ge-rich soil has become particularly important,but the enrichment pattern and control factors of Ge-rich soil are still not well understood due to the high dispersion and high migration of Ge-rich soil.In this paper,495 surface soil(0-20 cm)and 149 deep soil(150-200 cm)samples were collected from the northern foothills of Dabie Mountain using a double-layer grid layout,and the spatial distribution and enrichment characteristics of Ge were studied by high-resolution method,and the controlling factors affecting the distribution of Ge-rich soil was analyzed by geo-statistics and spatial analogy.The results show an average Ge content of 1.34 mg/kg for the surface and 1.36 mg/kg for the deep soil.In the assessment grade classification of surface and deep soil for Ge,the abundant and sub-abundant grades account for 37.97%and 31.70%,respectively,covering 752 km2 and 634 km2.Surface Ge-rich regions are distributed in concentrated strips in the north-central part of the studied region,and there is no clear pattern in the spatial distribution of deep soils.In the areas under study,such as Fenlukou,Dingji,and Jiangjiadian,the surface soil is very rich in Ge and has a high enrichment factor,which is valuable for agricultural development.In surface soils,river deposits and shallow metamorphic rock parent materials have the highest content of Ge,while in deep soils,the highest content has been found in the parent material of moderately acidic rock.Both surface and deep soils have the highest Ge content in purple paddy soils and plain areas.The source of Ge in the soils of the study area is most influenced by the lithology of the soil-forming parent material,while the distribution of Ge in the surface soils is jointly influenced by pH,SiO_(2),TFe_(2)O_(3),and Al_(2)O_(3) in the soil.This study has implications for understanding the enrichment pattern of Ge in soil and its controlling factors as well as for the development of Ge-rich agricultural products.
基金funded by National Natural Science Foundation of China(Grant No.41877398)the Basic Science Research Fund from the Institute of Chinese Academy of Geological Sciences(Grant No.SK201911)the Belt and Road Fund on Water and Sustainability(U2019NKMS01)。
文摘Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.
基金This work was supported by the China Geolo gical Survey project(No.DD20190555)and the People’s Government of Shunping County。
文摘Hebei Province is rich in geological heritage resources due to its diverse landforms and unique natural conditions.However,detailed investigation and study of the resources are still limited,and a systematic survey conducted on a small scale has not been fully implemented.In this paper,the resource types and characteristics of the geological heritage in Shunping County are systematically discussed,on the basis of field investigation and scientific evaluation.With reference to the existing criteria for geological heritage resources survey,the heritage values and corresponding levels were assessed by using multi-factor quantitative evaluation approach.The results show that there are 33 geological heritage sites in Shunping County,which fall into 3 categories,10 classes and 17 subcategories.Among them,2 heritage sites are above the provincial level,14 heritage sites are at the provincial level and 17 ones are below the level.These heritage sites are not only natural resources with great tourism potential,but also valuable asset in geological research,human history,ecological conservation,scientific education and some other aspects.It is hence of great significance to conduct the scientific and reasonable appraisal for having a better understanding,good protection and development of the geological heritage resources in Hebei Province.