The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largel...The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band r...A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band regions due to nonlinear effects.Therefore,the FTS nonlinear problem must be corrected.In this study,we proposed a novel method to correct the nonlinear effects using simulated annealing.We simulated several nonlinear spectra to evaluate the performance of our method.The calculated quadratic coefficients are extremely close to the given values,demonstrating that the method is effective and accurate.The proposed method is further used to correct the blackbody and solar spectra with nonlinearity obtained by Bruker IFS-125HR installed at the Huairou Solar Observing Station,which is a pathfinder for the accurate infrared magnetic field measurements of the Sun project.To the blackbody spectra,the nonlinearity in low-and high-frequency regions are corrected by 89.09%and 60.84%.The nonlinear correction of the solar spectra in the low-and high-frequency regions have reached 65.34%and 81.04%,respectively.These results prove that our method can correct the nonlinear problem to improve the data accuracy.展开更多
In the archive of the Ground Wide Angle Camera(GWAC),we found 43 white light flares from 43 stars,among which,three are sympathetic or homologous flares,and one of them also has a quasi-periodic pulsation with a perio...In the archive of the Ground Wide Angle Camera(GWAC),we found 43 white light flares from 43 stars,among which,three are sympathetic or homologous flares,and one of them also has a quasi-periodic pulsation with a period of 13.0±1.5 minutes.Among these 43 flare stars,there are 19 new active stars and 41 stars that have available TESS and/or K2 light curves,from which we found 931 stellar flares.We also obtained rotational or orbital periods of 34 GWAC flare stars,of which 33 are less than 5.4 days,and ephemerides of three eclipsing binaries from these light curves.Combining with low resolution spectra from LAMOST and the Xinglong 2.16 m telescope,we found that L_(Hα)/L_(bol) are in the saturation region in the rotation-activity diagram.From the LAMOST medium-resolution spectrum,we found that Star#3(HAT 178-02667)has double Hαemissions which imply it is a binary,and two components are both active stars.Thirteen stars have flare frequency distributions(FFDs)from TESS and/or K2 light curves.These FFDs show that the flares detected by GWAC can occur at a frequency of 0.5to 9.5 yr^(-1).The impact of flares on habitable planets was also studied based on these FFDs,and flares from some GWAC flare stars may produce enough energetic flares to destroy ozone layers,but none can trigger prebiotic chemistry on their habitable planets.展开更多
The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parame...The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.展开更多
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter f...This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.展开更多
With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated h...With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated hardware configurations of these devices,there is an urgent need for efficient autonomous observation capabilities.An autonomous Master Control System(MCS)can ensure efficient performance,data consistency,and stability,and the prototype presented here adopts a microservices architecture,breaking down the hardware into multiple subsystems and converting their functions into individual services.A central decision-making system leads the operations,supported by three auxiliary systems and three device control systems.Through inter-subsystem service calls,it achieves rapid imaging and spectroscopic monitoring.To verify system stability and observation efficiency,the system was tested on the Solar Full-disk Multi-layer Magnetograph.Experimental results verify this system can operate automatically for 4 consecutive months,acquire photospheric vector magnetic and Doppler velocity fields within a 15-minute interval,and measure chromospheric longitudinal magnetic and Doppler velocity fields in under 180 s.This ensures consistent and stable solar monitoring and serves as a practical methodological benchmark for the development of similar devices.展开更多
The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC...The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC 23 from 1996 November to 2001 April. The results are summarized below. (i) During the maximum phase, the number of sunspots in SC 24 is significantly smaller than that for SC 23 and the number of flares in SC 24 is comparable to that of SC 23. (ii) The number of CMEs in SC 24 is larger than that in SC 23 and the speed of CMEs in SC 24 is smaller than that of SC 23 during the maximum phase. We individually survey all the CMEs (1647 CMEs) from 2010 June to 2011 June. A total of 161 CMEs associated with so- lar surface activity events can be identified. About 45% of CMEs are associated with quiescent prominence eruptions, 27% of CMEs only with solar flares, 19% of CMEs with both active-region prominence eruptions and solar flares, and 9% of CMEs only with active-region prominence eruptions. Comparing the association of the CMEs and their source regions in SC 24 with that in SC 23, we notice that the characteristics of source regions for CMEs during SC 24 may be different from those of SC 23.展开更多
Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical ana...Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical analysis of grouped solar flare(GSF) and sunspot number(SN) during the time interval from January 1965 to March 2009.We find that,(1) the significant periodicities of both GSF and SN are related to the differential rotation periodicity,the quasi-biennial oscillation(QBO),and the eleven-year Schwabe cycle(ESC),but the specific values are not absolutely identical;(2) the ESC signal of GSF lags behind that of SN with an average of 7.8 months during the considered time interval,which implies that the systematic phase delays between GSF and SN originate from the inter-solar-cycle signal.Our results may provide evidence about the storage of magnetic energy in the corona.展开更多
This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns rec...This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years. All new properties are considered in light of both what was known earlier and new theoretical models. Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves "high- light" the levels of double plasma resonance (DPR). A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type Ⅲ-like bursts. The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts. The additional injection of fast particles filled the loss-cone (breaking the loss-cone distribution), and the generation of the continuum was quenched at these moments. The maximum absorptive effect occurs at the DPR levels. The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source. Thus, the DPR model helps to understand severai aspects of unusual elements of ZPs. However, the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field. Three new theories of ZPs are examined. The formation of eigenmodes of transparency and opac- ity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism. Two other models (nonlinear periodic space - charge waves and scattering of fast protons on ion-sound harmonics) could happen in large radio bursts.展开更多
Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data obse...Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several paral- lel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10" were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s^-1 to 15.0 km s^-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter- streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.展开更多
We examine the solar cycle distribution of major geomagnetic storms (Dst ≤ -100 nT), including intense storms at the level of -200 nT〈 Dst ≤ -100 nT, great storms at -300 nT〈 Dst ≤-200 nT, and super storms at D...We examine the solar cycle distribution of major geomagnetic storms (Dst ≤ -100 nT), including intense storms at the level of -200 nT〈 Dst ≤ -100 nT, great storms at -300 nT〈 Dst ≤-200 nT, and super storms at Dst ≤ -300 nT, which occurred during the period of 1957-2006, based on Dst indices and smoothed monthly sunspot numbers. Statistics show that the majority (82%) of the geomagnetic storms at the level of Dst≤ -100 nT that occurred in the study pe- riod were intense geomagnetic storms, with 12.4% ranked as great storms and 5.6% as super storms. It is interesting to note that about 27% of the geomagnetic storms that occurred at all three intensity levels appeared in the ascending phase of a solar cycle, and about 73% in the descending one. Statistics also show that 76.9% of the intense storms, 79.6% of the great storms and 90.9% of the super storms occurred during the two years before a solar cycle reached its peak, or in the three years after it. The correlation between the size of a solar cycle and the percentage of major storms that occurred, during the period from two years prior to maximum to three years af- ter it, is investigated. Finally, the properties of the multi-peak distribution for major geomagnetic storms in each solar cycle is investigated.展开更多
This work analyzes the annual fluctuation of the observation data of the Mingantu Solar radio Telescope(MST)in S,C and X bands.It is found that the data vary with local air temperature as the logarithmic attenuation o...This work analyzes the annual fluctuation of the observation data of the Mingantu Solar radio Telescope(MST)in S,C and X bands.It is found that the data vary with local air temperature as the logarithmic attenuation of equipment increases with temperature and frequency.A simplified and effective calibration method is proposed,which is used to calibrate the MST data in 2018-2020,while the correction coefficients are calculated from data in 2018-2019.For S,C and X bands,the root mean square errors of one polarization are 2.7,5.7 and 20 sfu,and the relative errors are 4%,6%and 8%respectively.The calibration of MUSER and SBRS spectra is also performed.The relative errors of MUSER at 1700 MHz,SBRS at 2800 MHz,3050 MHz and 3350 MHz are 8%,8%,11%and 10%respectively.We found that several factors may affect the calibration accuracy,especially at X-band.The method is expected to work for other radio telescopes with similar design.展开更多
The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS)...The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS),working at 10-13μm,will use an FTS to observe the solar spectrum.The Bruker IFS-125 HR,which meets the spectral resolution requirement of AIMS but simply equips with a point source detector,is employed to carry out preliminary experiment for AIMS.A sun-light feeding experimental system is further developed.Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength,respectively.We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas.Although there is a wavelength limitation due to the present sun-light feeding system,the results in the wavelength band from 0.45-1.0μm and 1.0-2.2μm show a good consistency with the solar spectrum atlas,indicating the validity of our observing configuration,the data analysis method and the potential to work in longer wavelength.The work provided valuable experience for the AIMS not only for the operation of an FTS but also for the development of its scientific data processing software.展开更多
The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Go...The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Goode Solar Telescope(GST,formerly known as the New Solar Telescope)at Big Bear Solar Observatory(BBSO)solar images has high precision but small coverage.The super-resolution can make the captured images become clearer,so it is wildly used in solar image processing.The traditional super-resolution methods,such as interpolation,often use single image’s feature to improve the image’s quality.The methods based on deep learning-based super-resolution image reconstruction algorithms have better quality,but small-scale features often become ambiguous.To solve this problem,a transitional amplification network structure is proposed.The network can use the two types images relationship to make the images clear.By adding a transition image with almost no difference between the source image and the target image,the transitional amplification training procedure includes three parts:transition image acquisition,transition network training with source images and transition images,and amplification network training with transition images and target images.In addition,the traditional evaluation indicators based on structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)calculate the difference in pixel values and perform poorly in cross-type image reconstruction.The method based on feature matching can effectively evaluate the similarity and clarity of features.The experimental results show that the quality index of the reconstructed image is consistent with the visual effect.展开更多
In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energy- release sites. However, so far it is unclear how to diagnose these physical conditions. A solar microwave type I...In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energy- release sites. However, so far it is unclear how to diagnose these physical conditions. A solar microwave type III burst is believed to be a sensitive signature of primary energy release and electron accelerations in solar flares. This work takes into account the effect of the magnetic field on the plasma density and develops a set of formulas which can be used to estimate the plasma density, temperature, magnetic field near the magnetic reconnection site and particle acceleration region, and the velocity and energy of electron beams. We apply these formulas to three groups of microwave type III pairs in an X-class flare, and obtained some reasonable and interesting results. This method can be applied to other microwave type III bursts to diagnose the physical conditions of source regions, and provide some basic information to understand the intrinsic nature and fundamental processes occurring near the flare energy-release sites.展开更多
It is well-known that a gradient will inevitably drive a flow.For example,a density-gradient may drive a diffusion flow,an electrical potential-gradient may drive an electric current in plasmas,and so on.What flow wil...It is well-known that a gradient will inevitably drive a flow.For example,a density-gradient may drive a diffusion flow,an electrical potential-gradient may drive an electric current in plasmas,and so on.What flow will be driven when a magnetic-gradient occurs in solar atmospheric plasmas?Considering the ubiquitous distribution of magnetic-gradient in solar plasma loops,this work demonstrates that the magnetic-gradient pumping(MGP)mechanism is valid,even in the partial ionized solar photosphere and chromosphere as well as in the corona.The magnetic gradient drives energetic particle upflows that carry and convey kinetic energy from the underlying atmosphere to move upwards,accumulate around the looptop and increase the temperature and pressure,produce ballooning instabilities,and finally it leads to magnetic reconnections and eruptions around the looptop.This mechanism may explain the formation of the hot cusp-structures that can be observed above flaring loops in most preflare phases;therefore,the magneticgradient should be a natural driver of solar eruptions.Furthermore,we may also apply this mechanism to explain many other astrophysical phenomena,such as the cold of sunspot and the hot above it,the formation of solar plasma jets,type-II spicule,and fast solar wind above coronal holes,and also the fast plasma jets related to white dwarfs,neutron stars and black holes.展开更多
Using the Hilbert-Huang transform and the Lomb-Scargle method, we investigate periodicities in the daily solar radius data during the time interval from February 1978 to October 1999 derived from Caleru Observatory. T...Using the Hilbert-Huang transform and the Lomb-Scargle method, we investigate periodicities in the daily solar radius data during the time interval from February 1978 to October 1999 derived from Caleru Observatory. The following prominent periods are found: (1) the rotation cycle signal; (2) several mid-term periods including 122, 162.9 and 225 days, annual-variation periodicities (319 and 359 days), quasi-triennial oscillations (3.46 and 3.94 years); (3) the 11-year Schwabe cycle, which is in anti-phase with solar activity. This result indicates that the strong magnetic field associated with the Sun has a greater inhibitive effect on the radius variation.展开更多
We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23)...We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes.展开更多
基金supported by the National Key R&D Programs of China(2019YFA0405000,2022YFF0503800,2022YFF0503000)the Strategic Priority Research Programs of the Chinese Academy of Sciences(XDB0560000,XDB41000000)+1 种基金the National Natural Science Foundations of China(NSFC,Grant Nos.12173005,12273060,12350004,12273061,12222306,and 12073001)the Youth Innovation Promotion Association CAS,and Yunnan Academician Workstation of Wang Jingxiu(No.202005AF150025)。
文摘The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U1931107)supported by the National Key Research and Development Program of China No.2021YFA1600500。
文摘A Fourier transform spectrometer(FTS)has been used to observe solar activities due to its ultra-high spectral resolution.However,the FTS in-band spectra are usually distorted and some artifacts appear in out-of-band regions due to nonlinear effects.Therefore,the FTS nonlinear problem must be corrected.In this study,we proposed a novel method to correct the nonlinear effects using simulated annealing.We simulated several nonlinear spectra to evaluate the performance of our method.The calculated quadratic coefficients are extremely close to the given values,demonstrating that the method is effective and accurate.The proposed method is further used to correct the blackbody and solar spectra with nonlinearity obtained by Bruker IFS-125HR installed at the Huairou Solar Observing Station,which is a pathfinder for the accurate infrared magnetic field measurements of the Sun project.To the blackbody spectra,the nonlinearity in low-and high-frequency regions are corrected by 89.09%and 60.84%.The nonlinear correction of the solar spectra in the low-and high-frequency regions have reached 65.34%and 81.04%,respectively.These results prove that our method can correct the nonlinear problem to improve the data accuracy.
基金supported by the National Natural Science Foundation of China(NSFC)with grant No.12073038supported by the Joint Research Fund in Astronomy U1931133 under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)+1 种基金the NSFC with grant No.61941121the Beijing Natural Science Foundation,No.1222029。
文摘In the archive of the Ground Wide Angle Camera(GWAC),we found 43 white light flares from 43 stars,among which,three are sympathetic or homologous flares,and one of them also has a quasi-periodic pulsation with a period of 13.0±1.5 minutes.Among these 43 flare stars,there are 19 new active stars and 41 stars that have available TESS and/or K2 light curves,from which we found 931 stellar flares.We also obtained rotational or orbital periods of 34 GWAC flare stars,of which 33 are less than 5.4 days,and ephemerides of three eclipsing binaries from these light curves.Combining with low resolution spectra from LAMOST and the Xinglong 2.16 m telescope,we found that L_(Hα)/L_(bol) are in the saturation region in the rotation-activity diagram.From the LAMOST medium-resolution spectrum,we found that Star#3(HAT 178-02667)has double Hαemissions which imply it is a binary,and two components are both active stars.Thirteen stars have flare frequency distributions(FFDs)from TESS and/or K2 light curves.These FFDs show that the flares detected by GWAC can occur at a frequency of 0.5to 9.5 yr^(-1).The impact of flares on habitable planets was also studied based on these FFDs,and flares from some GWAC flare stars may produce enough energetic flares to destroy ozone layers,but none can trigger prebiotic chemistry on their habitable planets.
基金supported by the National Natural Science Foundation of China (Grant Nos.10973020, 40890161 and 10921303)the National Basic Research Program of China (973 Program, Grant No.2011CB811406)
文摘The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
基金supported by the National Key R&D program of China(2021YFE0110200)the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-018)+3 种基金the National Natural Science Foundation of China(41831073,42174196 and 42174212)the Chinese Meridian Projectthe Specialized Research Fund for State Key Laboratoriesthe International Partnership Program of Chinese Academy of Sciences.Grant No.183311KYSB20200003.
文摘This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.
基金supported by the National Key R&D Program of China (2022YFF0503800)the Chinese Meridian Project,the National Natural Science Foundation of China (11427901)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA15320102)the Youth Innovation Promotion Association (2022057).
文摘With the growing significance of space weather forecasting,multi-layer magnetic and helioseismic telescopes are emerging as a key area of research.However,owing to the diverse operational processes and sophisticated hardware configurations of these devices,there is an urgent need for efficient autonomous observation capabilities.An autonomous Master Control System(MCS)can ensure efficient performance,data consistency,and stability,and the prototype presented here adopts a microservices architecture,breaking down the hardware into multiple subsystems and converting their functions into individual services.A central decision-making system leads the operations,supported by three auxiliary systems and three device control systems.Through inter-subsystem service calls,it achieves rapid imaging and spectroscopic monitoring.To verify system stability and observation efficiency,the system was tested on the Solar Full-disk Multi-layer Magnetograph.Experimental results verify this system can operate automatically for 4 consecutive months,acquire photospheric vector magnetic and Doppler velocity fields within a 15-minute interval,and measure chromospheric longitudinal magnetic and Doppler velocity fields in under 180 s.This ensures consistent and stable solar monitoring and serves as a practical methodological benchmark for the development of similar devices.
基金Supported by the National Natural Science Foundation of China
文摘The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC 23 from 1996 November to 2001 April. The results are summarized below. (i) During the maximum phase, the number of sunspots in SC 24 is significantly smaller than that for SC 23 and the number of flares in SC 24 is comparable to that of SC 23. (ii) The number of CMEs in SC 24 is larger than that in SC 23 and the speed of CMEs in SC 24 is smaller than that of SC 23 during the maximum phase. We individually survey all the CMEs (1647 CMEs) from 2010 June to 2011 June. A total of 161 CMEs associated with so- lar surface activity events can be identified. About 45% of CMEs are associated with quiescent prominence eruptions, 27% of CMEs only with solar flares, 19% of CMEs with both active-region prominence eruptions and solar flares, and 9% of CMEs only with active-region prominence eruptions. Comparing the association of the CMEs and their source regions in SC 24 with that in SC 23, we notice that the characteristics of source regions for CMEs during SC 24 may be different from those of SC 23.
基金supported by the National Key Research and Development Program of China(2018YFA0404603)the Joint Research Fund in Astronomy(Nos.U1831204,U1931141 and U1631129)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and the Chinese Academy of Sciences(CAS)+3 种基金the NSFC(11903009)the Yunnan Key Research and Development Program(2018IA054)the open research program of the CAS Key Laboratory of Solar Activity(KLSA201807)the major scientific research project of Guangdong regular institutions of higher learning(2017KZDXM062)
文摘Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical analysis of grouped solar flare(GSF) and sunspot number(SN) during the time interval from January 1965 to March 2009.We find that,(1) the significant periodicities of both GSF and SN are related to the differential rotation periodicity,the quasi-biennial oscillation(QBO),and the eleven-year Schwabe cycle(ESC),but the specific values are not absolutely identical;(2) the ESC signal of GSF lags behind that of SN with an average of 7.8 months during the considered time interval,which implies that the systematic phase delays between GSF and SN originate from the inter-solar-cycle signal.Our results may provide evidence about the storage of magnetic energy in the corona.
基金the Russian Foundation of Basic Research (RFBR), grant Nos. 08-02-00270 and 11-02-91151
文摘This review covers the most recent experimental results and theoretical research on zebra patterns (ZPs) in solar radio bursts. The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years. All new properties are considered in light of both what was known earlier and new theoretical models. Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves "high- light" the levels of double plasma resonance (DPR). A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type Ⅲ-like bursts. The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts. The additional injection of fast particles filled the loss-cone (breaking the loss-cone distribution), and the generation of the continuum was quenched at these moments. The maximum absorptive effect occurs at the DPR levels. The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source. Thus, the DPR model helps to understand severai aspects of unusual elements of ZPs. However, the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field. Three new theories of ZPs are examined. The formation of eigenmodes of transparency and opac- ity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism. Two other models (nonlinear periodic space - charge waves and scattering of fast protons on ion-sound harmonics) could happen in large radio bursts.
基金supported by the National Natural Science Foundation of China(NSFC)under grant numbers 11373066,11373065 and 11203077the Yunnan Science Foundation of China under number 2013FB086+3 种基金the Talent Project of Western Light of Chinese Academy of Sciencesthe National Basic Research Program of China(973 program)under grant number G2011CB811400the Key Laboratory of Solar Activity of CAS under number KLSA 201303,KLSA 201412 and KLSA201407Youth Innovation Promotion Association of CAS(No.2011056)
文摘Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Ha data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several paral- lel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10" were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s^-1 to 15.0 km s^-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter- streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.
基金supported by the National Basic Research Program of China (973 Program, Grant Nos. 2012CB957801 and 2011CB811406)the National Natural Science Foundation of China (Grant Nos. 41074132, 41274193 and 40931056)the National Standard Research Program (Grant No. 10-123)
文摘We examine the solar cycle distribution of major geomagnetic storms (Dst ≤ -100 nT), including intense storms at the level of -200 nT〈 Dst ≤ -100 nT, great storms at -300 nT〈 Dst ≤-200 nT, and super storms at Dst ≤ -300 nT, which occurred during the period of 1957-2006, based on Dst indices and smoothed monthly sunspot numbers. Statistics show that the majority (82%) of the geomagnetic storms at the level of Dst≤ -100 nT that occurred in the study pe- riod were intense geomagnetic storms, with 12.4% ranked as great storms and 5.6% as super storms. It is interesting to note that about 27% of the geomagnetic storms that occurred at all three intensity levels appeared in the ascending phase of a solar cycle, and about 73% in the descending one. Statistics also show that 76.9% of the intense storms, 79.6% of the great storms and 90.9% of the super storms occurred during the two years before a solar cycle reached its peak, or in the three years after it. The correlation between the size of a solar cycle and the percentage of major storms that occurred, during the period from two years prior to maximum to three years af- ter it, is investigated. Finally, the properties of the multi-peak distribution for major geomagnetic storms in each solar cycle is investigated.
基金supported by NSFC(Grant Nos.11433006,11661161015,11790301,11790305,11973057,11773043,11941003 and 2018YFA0404602)the MOST grant(2014FY120300)。
文摘This work analyzes the annual fluctuation of the observation data of the Mingantu Solar radio Telescope(MST)in S,C and X bands.It is found that the data vary with local air temperature as the logarithmic attenuation of equipment increases with temperature and frequency.A simplified and effective calibration method is proposed,which is used to calibrate the MST data in 2018-2020,while the correction coefficients are calculated from data in 2018-2019.For S,C and X bands,the root mean square errors of one polarization are 2.7,5.7 and 20 sfu,and the relative errors are 4%,6%and 8%respectively.The calibration of MUSER and SBRS spectra is also performed.The relative errors of MUSER at 1700 MHz,SBRS at 2800 MHz,3050 MHz and 3350 MHz are 8%,8%,11%and 10%respectively.We found that several factors may affect the calibration accuracy,especially at X-band.The method is expected to work for other radio telescopes with similar design.
基金supported by the National Natural Science Foundation of China(Grant Nos.11873062,11427901,11673038,11803002,11973056,11973061,12003051 and 12073040)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA15320102 and XDA15052200)。
文摘The Fourier transform spectrometer(FTS)is a core instrument for solar observation with high spectral resolution,especially in the infrared.The Infrared System for the Accurate Measurement of Solar Magnetic Field(AIMS),working at 10-13μm,will use an FTS to observe the solar spectrum.The Bruker IFS-125 HR,which meets the spectral resolution requirement of AIMS but simply equips with a point source detector,is employed to carry out preliminary experiment for AIMS.A sun-light feeding experimental system is further developed.Several experiments are taken with them during 2018 and 2019 to observe the solar spectrum in the visible and near infrared wavelength,respectively.We also proposed an inversion method to retrieve the solar spectrum from the observed interferogram and compared it with the standard solar spectrum atlas.Although there is a wavelength limitation due to the present sun-light feeding system,the results in the wavelength band from 0.45-1.0μm and 1.0-2.2μm show a good consistency with the solar spectrum atlas,indicating the validity of our observing configuration,the data analysis method and the potential to work in longer wavelength.The work provided valuable experience for the AIMS not only for the operation of an FTS but also for the development of its scientific data processing software.
基金This work was supported in part by CAS Key Laboratory of Solar Activity,National Astronomical Observatories Commission for Collaborating Research Program(CRP)(No:KLSA202114)National Science Foundation Project of P.R.China under Grant No.61701554+2 种基金the cross-discipline research project of Minzu University of China(2020MDJC08)State Language Commission Key Project(ZDl135-39)Promotion plan for young teachers scientific research ability of Minzu University of China,MUC 111 Project,First class courses(Digital Image Processing KC2066).
文摘The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Goode Solar Telescope(GST,formerly known as the New Solar Telescope)at Big Bear Solar Observatory(BBSO)solar images has high precision but small coverage.The super-resolution can make the captured images become clearer,so it is wildly used in solar image processing.The traditional super-resolution methods,such as interpolation,often use single image’s feature to improve the image’s quality.The methods based on deep learning-based super-resolution image reconstruction algorithms have better quality,but small-scale features often become ambiguous.To solve this problem,a transitional amplification network structure is proposed.The network can use the two types images relationship to make the images clear.By adding a transition image with almost no difference between the source image and the target image,the transitional amplification training procedure includes three parts:transition image acquisition,transition network training with source images and transition images,and amplification network training with transition images and target images.In addition,the traditional evaluation indicators based on structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)calculate the difference in pixel values and perform poorly in cross-type image reconstruction.The method based on feature matching can effectively evaluate the similarity and clarity of features.The experimental results show that the quality index of the reconstructed image is consistent with the visual effect.
基金support by the National Natural Science Foundation of China(Grant Nos.11273030,11221063,11373039 and 11433006)MOST Grant(2014FY120300,CAS XDB09000000)+3 种基金the National Major Scientific Equipment R&D Project(ZDYZ 2009-3)support by the Grant P209/12/00103(GA CR)the research project(RVO:67985815)of the Astronomical Institute ASsupported by the Marie Curie PIRSES-GA-295272-RADIOSUN project
文摘In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energy- release sites. However, so far it is unclear how to diagnose these physical conditions. A solar microwave type III burst is believed to be a sensitive signature of primary energy release and electron accelerations in solar flares. This work takes into account the effect of the magnetic field on the plasma density and develops a set of formulas which can be used to estimate the plasma density, temperature, magnetic field near the magnetic reconnection site and particle acceleration region, and the velocity and energy of electron beams. We apply these formulas to three groups of microwave type III pairs in an X-class flare, and obtained some reasonable and interesting results. This method can be applied to other microwave type III bursts to diagnose the physical conditions of source regions, and provide some basic information to understand the intrinsic nature and fundamental processes occurring near the flare energy-release sites.
基金supported by the National Natural Science Foundation of China(Grant Nos.11433006,11573039,11661161015,11790301 and 11973057)。
文摘It is well-known that a gradient will inevitably drive a flow.For example,a density-gradient may drive a diffusion flow,an electrical potential-gradient may drive an electric current in plasmas,and so on.What flow will be driven when a magnetic-gradient occurs in solar atmospheric plasmas?Considering the ubiquitous distribution of magnetic-gradient in solar plasma loops,this work demonstrates that the magnetic-gradient pumping(MGP)mechanism is valid,even in the partial ionized solar photosphere and chromosphere as well as in the corona.The magnetic gradient drives energetic particle upflows that carry and convey kinetic energy from the underlying atmosphere to move upwards,accumulate around the looptop and increase the temperature and pressure,produce ballooning instabilities,and finally it leads to magnetic reconnections and eruptions around the looptop.This mechanism may explain the formation of the hot cusp-structures that can be observed above flaring loops in most preflare phases;therefore,the magneticgradient should be a natural driver of solar eruptions.Furthermore,we may also apply this mechanism to explain many other astrophysical phenomena,such as the cold of sunspot and the hot above it,the formation of solar plasma jets,type-II spicule,and fast solar wind above coronal holes,and also the fast plasma jets related to white dwarfs,neutron stars and black holes.
基金Supported by the National Natural Science Foundation of China
文摘Using the Hilbert-Huang transform and the Lomb-Scargle method, we investigate periodicities in the daily solar radius data during the time interval from February 1978 to October 1999 derived from Caleru Observatory. The following prominent periods are found: (1) the rotation cycle signal; (2) several mid-term periods including 122, 162.9 and 225 days, annual-variation periodicities (319 and 359 days), quasi-triennial oscillations (3.46 and 3.94 years); (3) the 11-year Schwabe cycle, which is in anti-phase with solar activity. This result indicates that the strong magnetic field associated with the Sun has a greater inhibitive effect on the radius variation.
基金Supported by the National Natural Science Foundation of China
文摘We present the results of a study on the north-south asymmetry of solar filaments at low(〈50°) and high(〉60°) latitudes using daily filament numbers from January 1998 to November 2008(solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes.