期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Wood anatomy chronologies of Scots pine in the foothills of the Western Sayan(Siberia)
1
作者 Elena A.Babushkina Dmitry R.Dergunov +6 位作者 Mikhail S.Zharkov Liliana V.Belokopytova Dina F.Zhirnova Bao Yang Jingjing Liu Xiaomei Peng Eugene A.Vaganov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期13-27,共15页
Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronol... Recent methodological advances in quantitative wood anatomy have provided new insights into the climatic responses of radial growth at the scale of cell structure of tree rings. This study considered long-term chronologies of tracheid measurements, indexed by a novel approach to separate their specific climatic responses from signal recorded in cell production(closely reflected in tree-ring width). To fill gaps in understanding the impact of climate on conifer xylem structure, Scots pine(Pinus sylvestris L.)trees > 200 years old were selected within the forest-steppe zone in southern Siberia. Such habitats undergo mild moisture deficits and the resulting climatic regulation of growth processes. Mean and maximum values of cell radial diameter and cell wall thickness were recorded for each tree ring.Despite a low level of climatogenic stress, components of cell chronologies independent of cambial activity were separated to obtain significant climatic signals revealing the timing of the specific stages of tracheid differentiation. Cell expansion lasted from mid-April to July and was impacted similarly to tree-ring width(stimulated by precipitation and stressed by heat), maximum cell size formed late June. A switch in the climatic responses of mean anatomical traits indicated transition to latewood in mid-July. Secondary wall deposition lasted until mid-September, suppressed by end of season temperatures. Generally, anatomical climatic responses were modulated by a less dry May and September compared with summer months. 展开更多
关键词 Quantitative wood anatomy Cell radial size Cell wall thickness Pinus sylvestris Climatic response
下载PDF
Dynamics of moisture regime and its reconstruction from a tree-ring width chronology of Pinus sylvestris in the downstream basin of the Selenga River, Russia 被引量:1
2
作者 Liliana BELOKOPYTOVA Dina ZHIRNOVA +1 位作者 Tatiana KOSTYAKOVA Elena BABUSHKINA 《Journal of Arid Land》 SCIE CSCD 2018年第6期877-891,共15页
Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information con... Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information contained in tree-ring width chronology was obtained through linear regression reconstruction models of annual August–July precipitation and annual water discharge of the Selenga River during the period 1767–2015. Comparison of the smoothed series allowed estimating long-term variation component of these moisture regime parameters with a high precision. At the same time, regional drought indices are less correlated with pine radial growth, because they have contribution of the other environmental variables, which are much less reflected in the tree-ring of the investigated pine forest stands. Reconstructed dynamic of the moisture regime parameters is supported by documental evident of many socially significant events in the regional history, such as crop failures caused by both droughts and floods, and catastrophic fire in the Irkutsk City in 1879. Also, dependence of the amount of precipitation in the study area on the atmospheric circulation in Central Asia is revealed to have a similar pattern with other regions, i.e., a negative relationship of precipitation with the development of large high atmospheric pressure area within its center in the Altai and Tianshan mountains. 展开更多
关键词 tree-ring width Pinus sylvestris climate HYDROLOGY precipitation reconstruction model
下载PDF
Divergent growth trends and climatic response of Picea obovata along elevational gradient in Western Sayan mountains, Siberia 被引量:1
3
作者 Elena BABUSHKINA Liliana BELOKOPYTOVA +2 位作者 Dina ZHIRNOVA Anna BARABANTSOVA Eugene VAGANOV 《Journal of Mountain Science》 SCIE CSCD 2018年第11期2378-2397,共20页
In mountain ecosystems,plants are sensitive to climate changes,and an entire range of species distribution can be observed in a small area.Therefore,mountains are of great interest for climate–growth relationship ana... In mountain ecosystems,plants are sensitive to climate changes,and an entire range of species distribution can be observed in a small area.Therefore,mountains are of great interest for climate–growth relationship analysis.In this study,the Siberian spruce’s(Picea obovata Ledeb.)radial growth and its climatic response were investigated in the Western Sayan Mountains,near the SayanoShushenskoe Reservoir.Sampling was performed at three sites along an elevational gradient:at the lower border of the species range,in the middle,and at the treeline.Divergence of growth trends between individual trees was observed at each site,with microsite landscape-soil conditions as the most probable driver of this phenomenon.Cluster analysis of individual tree-ring width series based on inter-serial correlation was carried out,resulting in two sub-set chronologies being developed for each site.These chronologies appear to have substantial differences in their climatic responses,mainly during the cold season.This response was not constant due to regional climatic change and the local influence of the nearby Sayano-Shushenskoe Reservoir.The main response of spruce to growing season conditions has a typical elevational pattern expected in mountains:impact of temperature shifts with elevation from positive to negative,and impact of precipitation shifts in the opposite direction.Chronologies of trees,growing under more severe micro-conditions,are very sensitive to temperature during September–April and to precipitation during October–December,and they record both inter-annual and long-term climatic variation.Consequently,it would be interesting to test if they indicate the Siberian High anticyclone,which is the main driver of these climatic factors. 展开更多
关键词 Climate change Tree-ring width Growth trends Climate-growth relationship Picea obovata Elevational gradient
下载PDF
Warming induced changes in wood matter accumulation in tracheid walls of spruce
4
作者 Elena BABUSHKINA Dina ZHIRNOVA +1 位作者 Liliana BELOKOPYTOVA Eugene VAGANOV 《Journal of Mountain Science》 SCIE CSCD 2020年第1期16-30,共15页
The warming-driven increase of the vegetation season length impacts both net productivity and phenology of plants, changing an annual carbon cycle of terrestrial ecosystems. To evaluate this influence, tree growth alo... The warming-driven increase of the vegetation season length impacts both net productivity and phenology of plants, changing an annual carbon cycle of terrestrial ecosystems. To evaluate this influence, tree growth along the temperature gradients can be investigated on various organization levels, beginning from detailed climatic records in xylem cells’ number and morphometric parameters. In this study, the Borus Ridge of the Western Sayan Mountains(South Siberia) was considered as a forest area under rapid climate change caused by massive Sayano-Shushenskoe reservoir. Several parameters of the xylem anatomical structure in Siberian spruce(Picea obovata Ledeb.)were derived from normalized tracheidograms of cell radial diameter and cell wall thickness and analyzed during 50 years across elevational gradient(at 520,960, and 1320 m a.s.l.). On the regional scale, the main warming by 0.42°C per decade occurs during cold period(November–March). Construction of the reservoir accelerated local warming substantially since 1980, when abrupt shift of the cold season temperature by 2.6°C occurred. It led to the vegetation season beginning 3-6 days earlier and ending 4-10 day later with more stable summer heat supply. Two spatial patterns were found in climatic response of maximal cell wall thickness:(1)temperature has maximal impact during 21-day period, and its seasonality shifts with elevation in tune with temperature gradient;(2) response to the date of temperature passing +9.5°C threshold is observed at two higher sites. Climate change yielded significantly bigger early wood spruce tracheids at all sites, but its impact on cell wall deposition process had elevational gradient: maximal wall thickness increased by 7.9% at the treeline, by 18.2% mid-range,and decreased by 4.9% at the lower boundary of spruce growth;normalized total cell wall area increased by 6.2%-6.8% at two higher sites but remained stable at the lowest one. We believe that these patterns are caused by two mechanisms of spruce secondary growth cessation: "emergency"induced by temperature drop versus "regular" one in warmer conditions. Therefore, autumn lengthening of growth season stimulated wood matter accumulation in tracheid walls mainly in cold environment,increasing role of boreal and mountain forests in carbon cycle. 展开更多
关键词 Climate change Sayano-Shushenskoe Reservoir Elevational gradient Picea obovata Quantitative wood anatomy Climate–growth relationship
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部