CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production,but it has not been thoroughly studied.A CuS light absorber layer is grown by the self-as...CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production,but it has not been thoroughly studied.A CuS light absorber layer is grown by the self-assembly of copper and sulfur precursors on a carbon paper(CP)electrode.Simultaneously,rGO is introduced as a buffer layer to control the optical and electrical properties of the absorber.The well-ordered microstructural arrangement suppresses the recombination loss of electrons and holes owing to enhanced charge-carrier generation,separation,and transport.The potential reaching 10 mA cm^(-2)in 1.0 M KOH solution is significantly lowered to 0.87 V,and the photocurrent density at 1.23 V is 94.7 mA cm^(-2).The computational result reveals that the potential-determining step is sensitive to O^(*)stability;the lower stability of O^(*)in the thin layer of CuS/rGO decreases the free-energy gap between the initial and final states of the potential-determining step,resulting in a lowering of the onset potential.The faradaic efficiency for the photoelectrochemical oxygen evolution reaction in the optimized 2CuS/1rGO/CP photoanode is 98.60%,and the applied bias photon-to-current and the solar-to-hydrogen efficiencies are 11.2%and 15.7%,respectively,and its ultra-high performance is maintained for 250 h.These record-breaking achievement indices may be a trigger for establishing a green hydrogen economy.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic a...A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.展开更多
Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condit...Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.展开更多
This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems...This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems without smoothing reactors or PTP (Point-To-Point) with very short transmission line. This method proposes a new direction for HVDC system design and analysis. The proposed method is applied to a 50 Hz/60 Hz BTB test system and a synchronized BTB test system. After simulation and verification, the new results are introduced.展开更多
A slip critical connection has various values to adopt the proper slip coefficient in various conditions of faying surfaces in AISC, AIJ and Eurocode3. The Korean Building Code regulates the unique slip coefficient, f...A slip critical connection has various values to adopt the proper slip coefficient in various conditions of faying surfaces in AISC, AIJ and Eurocode3. The Korean Building Code regulates the unique slip coefficient, from 0.45 to 0.5 without consideration of the diverse faying conditions in 2009. In this study, the slip resistance test, including five kinds of surface treatments were conducted to obtain the proper slip coefficients available to steel plate KS SM490A. The slip coefficient of specimens over zinc primer thickness of 128 lam exhibit was 0.42. The clean mill treated surface had prominently lower values as slip coefficient, 0.27. For red lead painted treatment, it is suggested to setup a minimum slip coefficient, 0,21, below a coating thickness of 65 μam. The slip coefficient of one faced lap connection was higher 1.4 times than the slip coefficient of two faced lap connection.展开更多
Herein,incremental capacity-differential voltage (IC-DV) at a high C-rate (HC) is used as a non-invasive diagnostic tool in lithium-ion batteries,which inevitably exhibit capacity fading caused by multiple mechanisms ...Herein,incremental capacity-differential voltage (IC-DV) at a high C-rate (HC) is used as a non-invasive diagnostic tool in lithium-ion batteries,which inevitably exhibit capacity fading caused by multiple mechanisms during charge/discharge cycling.Because battery degradation modes are complex,the simple output of capacity fading does not yield any useful data in that respect.Although IC and DV curves obtained under restricted conditions (<0.1C,25℃) were applied in non-invasive analysis for accurate observation of degradation symptoms,a facile,rapid diagnostic approach without intricate,complex calculations is critical in on-board applications.Herein,Li Ni_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC532)/graphite pouch cells were cycled at 4 and 6C and the degradation characteristics,i.e.,loss of active materials (LAM) and loss of lithium inventory (LLI),were parameterized using the IC-DV curves.During the incremental current cycling,the initial steep LAM and LLI slopes underwent gradual transitions to gentle states and revealed the gap between low-and high-current measurements.A quantitative comparison of LAM at high and low C-rate showed that a IC;revealed the relative amount of available reaction region limited by cell polarization.However,this did not provide a direct relationship for estimating the LAM at a low C-rate.Conversely,the limiting LLI,which is calculated at a C-rate approaching 0,was obtained by extrapolating the LLI through more than two points measured at high C-rate,and therefore,the LLI at 0.1C was accurately determined using rapid cycling.展开更多
Intelligent distribution automation system (IDAS) was developed based on distribution automation system that was installed in all distribution offices of Korea. IDAS was designed the combined system with the functio...Intelligent distribution automation system (IDAS) was developed based on distribution automation system that was installed in all distribution offices of Korea. IDAS was designed the combined system with the function of supervisory control and data acquisition (SCADA) and distribution automation system (DAS) for network operation from substation to high voltage customer, and it has been installed in Vietnam, China and Indonesia. This paper explains the project scope, system configuration, and the function of each sy stem.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A2C2008313)
文摘CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production,but it has not been thoroughly studied.A CuS light absorber layer is grown by the self-assembly of copper and sulfur precursors on a carbon paper(CP)electrode.Simultaneously,rGO is introduced as a buffer layer to control the optical and electrical properties of the absorber.The well-ordered microstructural arrangement suppresses the recombination loss of electrons and holes owing to enhanced charge-carrier generation,separation,and transport.The potential reaching 10 mA cm^(-2)in 1.0 M KOH solution is significantly lowered to 0.87 V,and the photocurrent density at 1.23 V is 94.7 mA cm^(-2).The computational result reveals that the potential-determining step is sensitive to O^(*)stability;the lower stability of O^(*)in the thin layer of CuS/rGO decreases the free-energy gap between the initial and final states of the potential-determining step,resulting in a lowering of the onset potential.The faradaic efficiency for the photoelectrochemical oxygen evolution reaction in the optimized 2CuS/1rGO/CP photoanode is 98.60%,and the applied bias photon-to-current and the solar-to-hydrogen efficiencies are 11.2%and 15.7%,respectively,and its ultra-high performance is maintained for 250 h.These record-breaking achievement indices may be a trigger for establishing a green hydrogen economy.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金Project(2009T100100602) supported by the Korea Institute of Energy Technology Evaluation and Planning,Korea
文摘A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.
基金supported by the MEST/NRF (Nuclear R&D Program,2005-2004718 and 2009 0083392) of Korea
文摘Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.
文摘This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems without smoothing reactors or PTP (Point-To-Point) with very short transmission line. This method proposes a new direction for HVDC system design and analysis. The proposed method is applied to a 50 Hz/60 Hz BTB test system and a synchronized BTB test system. After simulation and verification, the new results are introduced.
文摘A slip critical connection has various values to adopt the proper slip coefficient in various conditions of faying surfaces in AISC, AIJ and Eurocode3. The Korean Building Code regulates the unique slip coefficient, from 0.45 to 0.5 without consideration of the diverse faying conditions in 2009. In this study, the slip resistance test, including five kinds of surface treatments were conducted to obtain the proper slip coefficients available to steel plate KS SM490A. The slip coefficient of specimens over zinc primer thickness of 128 lam exhibit was 0.42. The clean mill treated surface had prominently lower values as slip coefficient, 0.27. For red lead painted treatment, it is suggested to setup a minimum slip coefficient, 0,21, below a coating thickness of 65 μam. The slip coefficient of one faced lap connection was higher 1.4 times than the slip coefficient of two faced lap connection.
基金supported by the projects of the Korea Electric Power Corporation(R19TA05)。
文摘Herein,incremental capacity-differential voltage (IC-DV) at a high C-rate (HC) is used as a non-invasive diagnostic tool in lithium-ion batteries,which inevitably exhibit capacity fading caused by multiple mechanisms during charge/discharge cycling.Because battery degradation modes are complex,the simple output of capacity fading does not yield any useful data in that respect.Although IC and DV curves obtained under restricted conditions (<0.1C,25℃) were applied in non-invasive analysis for accurate observation of degradation symptoms,a facile,rapid diagnostic approach without intricate,complex calculations is critical in on-board applications.Herein,Li Ni_(0.5)Mn_(0.3)Co_(0.2)O_(2)(NMC532)/graphite pouch cells were cycled at 4 and 6C and the degradation characteristics,i.e.,loss of active materials (LAM) and loss of lithium inventory (LLI),were parameterized using the IC-DV curves.During the incremental current cycling,the initial steep LAM and LLI slopes underwent gradual transitions to gentle states and revealed the gap between low-and high-current measurements.A quantitative comparison of LAM at high and low C-rate showed that a IC;revealed the relative amount of available reaction region limited by cell polarization.However,this did not provide a direct relationship for estimating the LAM at a low C-rate.Conversely,the limiting LLI,which is calculated at a C-rate approaching 0,was obtained by extrapolating the LLI through more than two points measured at high C-rate,and therefore,the LLI at 0.1C was accurately determined using rapid cycling.
文摘Intelligent distribution automation system (IDAS) was developed based on distribution automation system that was installed in all distribution offices of Korea. IDAS was designed the combined system with the function of supervisory control and data acquisition (SCADA) and distribution automation system (DAS) for network operation from substation to high voltage customer, and it has been installed in Vietnam, China and Indonesia. This paper explains the project scope, system configuration, and the function of each sy stem.