期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Effect of pre-twinning and heat treatment on formability of AZX311 Mg alloy
1
作者 Mahesh Panchal Lalit Kaushik +3 位作者 Min-Seong Kim Ravi Kottan Renganayagalu Shi-Hoon Choi Jaiveer Singh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1154-1169,共16页
In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain... In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain the sheets using the in-plane compression(IPC)technique along the rolling direction(RD)to introduce TTWs.The pre-strained(PS)samples were subsequently heat-treated at 250℃,350℃,and 400℃ independently for 1 hr,and are termed as PSA1,PSA2,and PSA3,respectively.Erichsen cupping tests were conducted to assess the formability of the sheet samples under different initial conditions.The results showed that the PS sample heat-treated at 250℃ for 1hr exhibited a decrease in the Erichsen index(IE)compared to the as-rolled sample,whereas PSA2 and PSA3 samples showed an increase in IE values.Microtexture analysis revealed that most of the TTWs generated through pre-twinning were stable at 250℃;however,the twin volume fraction reduced to 41%at 350℃ compared to the PS samples due to enhanced thermal activity at that temperature.Furthermore,PSA2 samples showed severe grain coarsening in some areas of the sample,and the fraction of such grains increased in the PSA3 samples.The stretch formability(IE value)of PSA2 samples showed a 32.3%increase compared to the as-rolled specimens.Additionally,the analysis of the deformed specimen at failure under the Erichsen test indicated that considerable detwinning occurs in the PS and PSA1 samples,whereas dislocation slip activity dominates in the PSA2 and PSA3 samples during stretch forming.Apart from detwinning and dislocation slip,deformation twins were also observed in all samples after the Erichsen test.Thus,this work highlights the importance of texture control and its underlying mechanisms via pre-twinning followed by heat treatment and their impact on the room temperature(RT)stretch formability of AZX311 Mg alloy sheets. 展开更多
关键词 Mg alloys Pre-twinning Texture FORMABILITY EBSD.
下载PDF
Unravelling the role of the combined effect of metallic charge transfer channel and SiO_(x) overlayer in the Zr/Si-Fe_(2)O_(3):Au:SiO_(x) nanorod arrays to boost photoelectrochemical water splitting
2
作者 Tae Sik Koh Periyasamy Anushkkaran +5 位作者 Love Kumar Dhandole Mahadeo A.Mahadik Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期370-379,I0009,共11页
Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose... Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose a Zr-doped Fe_(2)O_(3) photoanode decorated with facilely spin-coated Au nanoparticles(NPs) and microwave-assisted attached Si co-doping in conjunction with a SiO_(x) overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm^(2) at 1.23 V vs.RHE.The kinetic dynamics at the photoelectrode/-electrolyte interface was examined by employing systematic electrochemical investigations.The Au NPs played a dual role in increasing PEC water splitting.First,the Schottky interface that was formed between Au NPs and Zr-Fe_(2)O_(3) lectrode ensured the prevention of electron flow from the photoanode to the metal,increasing the number of available charges as well as suppressing surface charge recombination.Second,Au extracted photoholes from the bulk of the Zr-Fe_(2)O_(3) and transported them to the outer SiO_(x) overlayer,while the SiO_(x) overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte.Further,Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density.This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion. 展开更多
关键词 HEMATITE Microwave attachment Au nanoparticles SiO_(x) overlayer Water splitting
下载PDF
Hydrothermal decomposition of pentachlorophenol in subcritical and supercritical water with sodium hydroxide addition 被引量:4
3
作者 PRABOWO Benedictus VERIANSYAH Bambang KIM Jae-Duck 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期663-666,共4页
Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) additi... Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively. 展开更多
关键词 PENTACHLOROPHENOL hydrothermal decomposition supercritical water suberitical water
下载PDF
Detection of Apple Marssonina Blotch with PLSR, PCA, and LDA Using Outdoor Hyperspectral Imaging 被引量:3
4
作者 Soo Hyun Park Youngki Hong +2 位作者 Mubarakat Shuaibu Sangcheol Kim Won Suk Lee 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第4期1309-1314,共6页
In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch(AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using part... In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch(AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using partial least squares regression(PLSR), principal component analysis(PCA), and linear discriminant analysis(LDA) multivariate methods. In general, the LDA estimation model performed the best among the three models in detecting AMB asymptomatic pixels, while all the models were able to detect the symptomatic class. LDA correctly classified asymptomatic pixels and LDA model predicted them with an accuracy of 88.0%. An accuracy of 91.4% was achieved as the total classification accuracy. The results from this work indicate the potential of using the LDA estimation model to identify asymptomatic pixels on leaves infected by AMB. 展开更多
关键词 APPLE Marssonina blotch HYPERSPECTRAL IMAGING PLSR PCA LDA
下载PDF
A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether 被引量:2
5
作者 Munjeong Jang Byeong Soo Shin +4 位作者 Young Suk Jo Jeong Won Kang Sang Kyu Kwak Chang Won Yoon Hyangsoo Jeong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期11-16,共6页
Hydrogen storage in Liquid Organic Hydrogen Carrier(LOHC)systems is appealing for the safe storage and distribution of excess renewable energy via existing gasoline infrastructures to end-users.We present the eutectic... Hydrogen storage in Liquid Organic Hydrogen Carrier(LOHC)systems is appealing for the safe storage and distribution of excess renewable energy via existing gasoline infrastructures to end-users.We present the eutectic mixture of biphenyl and diphenyl ether of its first use as a LOHC material.The material is hydrogenated with 99%selectivity without the cleavage of C–O bond,with commercial heterogeneous catalysts,which is confirmed by nuclear magnetic spectroscopy and gas chromatography-mass spectrometry.Equilibrium concentration,dehydrogenation enthalpy,and thermo-neutral temperature are calculated using a density functional theory.The results indicate that O-atom-containing material exhibits more favorable dehydrogenation thermodynamics than that of the hydrocarbon analogue.The H2-rich material contains6.8 wt%of gravimetric hydrogen storage capacity.A preliminary study of catalytic dehydrogenation on a continuous reactor is presented to demonstrate a reversibility of this material. 展开更多
关键词 HYDROGEN storage Liquid organic HYDROGEN carrier DIPHENYL ETHER DEHYDROGENATION Thermodynamics
下载PDF
Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes 被引量:2
6
作者 Hyeonhee Roh Young Jun Yoon +4 位作者 Jin Soo Park Dong-Hyun Kang Seung Min Kwak Byung Chul Lee Maesoon Im 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期60-78,共19页
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to ... Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on. 展开更多
关键词 MICRONEEDLE Various heights Cross-sectional shapes Isotropic etch Deep reactive ion etching
下载PDF
Transcriptional profiling of dental sensory and proprioceptive trigeminal neurons using single-cell RNA sequencing
7
作者 Pa Reum Lee Jihoon Kim +4 位作者 Heather Lynn Rossi Sena Chung Seung Yub Han Junhyong Kim Seog Bae Oh 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第3期513-526,共14页
Dental primary afferent(DPA)neurons and proprioceptive mesencephalic trigeminal nucleus(MTN)neurons,located in the trigeminal ganglion and the brainstem,respectively,are essential for controlling masticatory functions... Dental primary afferent(DPA)neurons and proprioceptive mesencephalic trigeminal nucleus(MTN)neurons,located in the trigeminal ganglion and the brainstem,respectively,are essential for controlling masticatory functions.Despite extensive transcriptomic studies on various somatosensory neurons,there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation.Here,we employed high-depth single-cell RNA sequencing(scRNA-seq)in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons.Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment,some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth.Furthermore,we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles.Additionally,DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels,receptors,neuropeptides,and mechanoreceptors.Together,our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception. 展开更多
关键词 TRIGEMINAL specialized TOGETHER
下载PDF
Synergistic Effect of Core/Shell‑Structured Composite Fibers:Efficient Recovery of Rare‑Earth Elements from Spent NdFeB Permanent Magnets
8
作者 Youngkyun Jung Yun Lee +1 位作者 Su‑Jin Yoon Jae‑Woo Choi 《Advanced Fiber Materials》 SCIE EI CAS 2024年第6期1729-1745,共17页
NdFeB magnets are third-generation permanent magnets that are employed as indispensable components in various industries.Notably,rare-earth elements(REEs)such as Dy and Nd must be efficiently recovered from end-of-lif... NdFeB magnets are third-generation permanent magnets that are employed as indispensable components in various industries.Notably,rare-earth elements(REEs)such as Dy and Nd must be efficiently recovered from end-of-life magnets to enable resource circulation and reinforce unstable supply chains.To that end,this paper reports synergistically performing core/shell-structured composite fibers(CSCFs)containing sodium polyacrylate and nanoporous zeolitic imidazolate framework-8(NPZIF-8)nanocrystals as a readily recoverable adsorbent with an exceptional REE-adsorbing ability.The CSCF core forms an NPZIF-8 nanocrystal shell on the fiber surface as well as draws REEs using its dense sodium carboxylate groups into the NPZIF-8 nanocrystal lattice with high specific surface area.The CSCFs exhibit significantly higher maximum adsorption capacities(468.60 and 435.13 mg·g-1)and kinetic rate constants(2.02 and 1.92 min-1)for the Nd3+and Dy3+REEs than those of previously reported REE adsorbents.Additionally,the simple application of the CSCFs to an adsorption reactor considerably mitigates the adsorbent-shape-induced pressure drop,thereby directly influencing the energy efficiency of the recovery.Moreover,the high REE-recovery ability,tractability,and recyclability of the CSCFs offers a pragmatic pathway to achieving cost-effective REE recovery.Overall,this study provides new insights into designing synergistically performing core/shell architectures for feasible REE recovery. 展开更多
关键词 Core/shell structures Fibrous adsorbents Synergistic adsorption Metal resource recovery Pressure drop Rare-earth elements
原文传递
Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells
9
作者 Inhyeok Cho Jiwon Yun +4 位作者 Boseok Seong Junseok Kim Sun Hee Choi Ho-Il Ji Sihyuk Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期1-9,I0001,共10页
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula... PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated. 展开更多
关键词 Protonic ceramic fuel cell Cathode Triple ionic and electronic conductor Hydration property Proton uptake Gibbs free energy
下载PDF
Amorphous BaTiO_(3) Electron Transport Layer for Thermal Equilibrium-Governed γ-CsPbl_(3) Perovskite Solar Cell with High Power Conversion Efficiency of 19.96%
10
作者 Changhyun Lee Chanyong Lee +4 位作者 Kyungjin Chae Taemin Kim Seaeun Park Yohan Ko Yongseok Jun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期291-302,共12页
Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress... Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%. 展开更多
关键词 amorphous BaTiO_(3) electron transport layer MOISTURE γ-CsPbI_(3)
下载PDF
Supercritical water oxidation for the destruction of toxic organic wastewaters:A review 被引量:27
11
作者 VERIANSYAH Bambang KIM Jae-Duck 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期513-522,共10页
The destruction of toxic organic wastewaters from munitions demilitarization and complex industrial chemical clearly becomes an overwhelming problem if left to conventional treatment processes. Two options, incinerati... The destruction of toxic organic wastewaters from munitions demilitarization and complex industrial chemical clearly becomes an overwhelming problem if left to conventional treatment processes. Two options, incineration and supercritical water oxidation (SCWO), exist for the complete destruction of toxic organic wastewaters. Incinerator has associated problems such as very high cost and public resentment; on the other hand, SCWO has proved to be a very promising method for the treatment of many different wastewaters with extremely efficient organic waste destruction 99.99% with none of the emissions associated with incineration. In this review, the concepts of SCWO, result and present perspectives of application, and industrial status of SCWO are critically examined and discussed. 展开更多
关键词 supercritical water oxidation toxic wastewater treatment SCWO industrial status
下载PDF
Challenges and opportunities for using formate to store, transport, and use hydrogen 被引量:5
12
作者 Katarzyna Grubel Hyangsoo Jeong +1 位作者 Chang Won Yoon Tom Autrey 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期216-224,共9页
In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid F... In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid FS,aqueous formate solutions,and aqueous bicarbonate solutions set the limitations for storage capacity,deliverable capacity,and usable H2capacity of these H2carriers,respectively.These parameters will help in the design of systems that use H2carriers for storage and transport of H2for fuel cell power applications.FS,as well as admixtures with formic acid(FA,H2CO2),have potential to address the goals outlined in the U.S.Department of Energy’s H2@scale initiative to store in chemical bonds a significant quantity of energy(hundreds of megawatts)obtained from large scale renewable resources. 展开更多
关键词 HYDROGEN carriers FORMATE SALTS BICARBONATE SALTS THERMODYNAMICS
下载PDF
Electrochemical determination of the degree of atomic surface roughness in Pt-Ni alloy nanocatalysts for oxygen reduction reaction 被引量:7
13
作者 Tae-Yeol Jeon Seung-Ho Yu +2 位作者 Sung J.Yoo Hee-Young Park Sang-Kyung Kim 《Carbon Energy》 CAS 2021年第2期375-383,共9页
Pt-Ni alloy nanocrystals with Pt-enriched shells were prepared by selective etching of surface Ni using sulfuric acid and hydroquinone.The changes in the electronic and geometric structure of the alloy nanoparticles a... Pt-Ni alloy nanocrystals with Pt-enriched shells were prepared by selective etching of surface Ni using sulfuric acid and hydroquinone.The changes in the electronic and geometric structure of the alloy nanoparticles at the surface were elucidated from the electrochemical surface area,the potential of zero total charge(PZTC),and relative surface roughness,which were determined from CO-and CO_(2)-displacement experiments before and after 3000 potential cycles under oxygen reduction reaction conditions.While the highest activity and durability were achieved in hydroquinone-treated Pt–Ni,sulfuric acidtreated one showed the lower activity and durability despite its higher surface Pt concentration and alloying level.Both PZTC and QCO_(2)/QCO ratio(desorption charge of reductively adsorbed CO_(2) normalized by COad-stripping charge)depend on surface roughness.In particular,QCO_(2)/QCO ratio change better reflects the roughness on an atomic scale,and PZTC is also affected by the electronic modification of Pt atoms in surface layers.In this study,a comparative study is presented to find a relationship between surface structure and electrochemical properties,which reveals that surface roughness plays a critical role to improve the electrochemical performance of Pt-Ni alloy catalysts with Pt-rich surfaces. 展开更多
关键词 ELECTROCATALYST fuel cell oxygen reduction reaction Pt-Ni surface roughness
下载PDF
Femtosecond laser-mediated anchoring of polymer layers on the surface of a biodegradable metal 被引量:3
14
作者 Jaeho Park Bo-In Park +7 位作者 Young Ju Son Sun Hee Lee Seung-Hoon Um Yu-Chan Kim Myoung-Ryul Ok Jeong-Yun Sun Hyung-Seop Han Hojeong Jeon 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1380-1388,共9页
Mg has received much attention as a next-generation implantable material owing to its biocompatibility,bone-like mechanical properties,and biodegradability in physiological environments.The application of various poly... Mg has received much attention as a next-generation implantable material owing to its biocompatibility,bone-like mechanical properties,and biodegradability in physiological environments.The application of various polymer coatings has been conducted in the past to reduce the rapid formation of hydrogen gas and the local change in pH during the initial phase of the chemical reaction with the body fluids.Here,we propose femtosecond(fs)laser-mediated Mg surface patterning for significant enhancement of the binding strength of the coating material,which eventually reduces the corrosion rate.Analyses of the structural,physical,crystallographic,and chemical properties of the Mg surface have been conducted in order to understand the mechanism by which the surface adhesion increases between Mg and the polymer coating layer.Depending on the fs laser conditions,the surface structure becomes rough owing to the presence of several microscaled pits and grooves of nanoporous MgO,resulting in a tightly bonded poly(lactic-co-glycolic acid)(PLGA)layer.The corrosion rate of the PLGA-coated,fs laser-treated Mg is considerably slow compared with the non-treated Mg;the treated Mg is also more biocompatible compared with the non-treated Mg.The fs laser-based surface modification technique offers a simple and quick method for introducing a rough coating on Mg;further,it does not require any chemical treatment,thereby overcoming a potential obstacle for its clinical use. 展开更多
关键词 Femtosecond laser Biodegradable metal Polymer coating Surface modification Surface adhesion
下载PDF
Decomposition kinetics of dimethyl methylphospate(chemical agent simulant) by supercritical water oxidation 被引量:2
15
作者 Bambang VERIANSYAH Jae-Duck KIM Youn-Woo LEE 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期13-16,共4页
Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An impor... Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data. 展开更多
关键词 supercritical water oxidation kinetics chemical agent DMMP
下载PDF
Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain 被引量:1
16
作者 Juhwan Kim Heh-In Im Changjong Moon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期77-85,共9页
A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a varie... A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of miRNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine (0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered miRNAs and their putative target mRNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping and CyTargetLinker. We found that 62 miRNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine (receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction. 展开更多
关键词 nerve regeneration nucleus accumbens MICRORNA MORPHINE SELF-ADMINISTRATION BIOINFORMATICS neural regeneration
下载PDF
Corrosion characteristics of single-phase Mg-3Zn alloy thin film for biodegradable electronics 被引量:1
17
作者 Ji-Woo Gu Jae-Young Bae +7 位作者 Guangzhe Li Hae Won Hwang So-Hyeon Lee Sung-Geun Choi Ju-Young Kim Myoung-Ryul Ok Yu-Chan Kim Seung-Kyun Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3241-3254,共14页
Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in th... Biodegradable metals as electrodes, interconnectors, and device conductors are essential components in the emergence of transient electronics, either for passive implants or active electronic devices, especially in the fields of biomedical electronics. Magnesium and its alloys are strong candidates for biodegradable and implantable conducting materials because of their high conductivity and biocompatibility, in addition to their well-understood dissolution behavior. One critical drawback of Mg and its alloys is their considerably high dissolution rates originating from their low anodic potential, which disturbs the compatibility to biomedical applications. Herein, we introduce a single-phase thin film of a Mg-Zn binary alloy formed by sputtering, which enhances the corrosion resistance of the device electrode, and verify its applicability in biodegradable electronics. The formation of a homogeneous solid solution of single-phase Mg-3Zn was confirmed through X-ray diffraction and transmission electron microscopy. In addition, the dissolution behavior and chemistry was also investigated in various biological fluids by considering the effect of different ion species. Micro-tensile tests showed that the Mg-3Zn alloy electrode exhibited an enhanced yield strain and elongation in relation to a pure Mg electrode. Cell viability test revealed the high biocompatibility rate of the Mg-3Zn binary alloy thin film. Finally, the fabrication of a wireless heater demonstrated the integrability of biodegradable electrodes and highlighted the ability to prolong the lifecycle of thermotherapy-relevant electronics by enhancing the dissolution resistance of the Mg alloy. 展开更多
关键词 Biodegradable alloy Mg-3Zn binary alloy Solid-solution thin film electrode Biodegradable conductor Transient electronics
下载PDF
Ex situ aging effect on sulfonated poly(ether ether ketone) membrane:Hydration-dehydration cycling and hydrothermal treatment
18
作者 Seung-Young Choi Kyeong Sik Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期583-592,I0014,共11页
Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation ... Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydrationdehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering.However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h. 展开更多
关键词 Sulfonated poly(ether ether ketone) Humidity cycle test Ex situ aging Proton exchange membrane Fuel cell
下载PDF
Unveiling the role of Ni in Ru-Ni oxide for oxygen evolution: Lattice oxygen participation enhanced by structural distortion
19
作者 Young-Jin Ko Man Ho Han +6 位作者 Chulwan Lim Seung-Ho Yu Chang Hyuck Choi Byoung Koun Min Jae-Young Choi Woong Hee Lee Hyung-Suk Oh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期54-61,I0003,共9页
Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru ... Introducing Ni in Ru oxide is a promising approach to enhance the catalytic activity for the oxygen evolution reaction(OER).However,the role of Ni(which has a poor intrinsic activity)is not fully understood.Here,a Ru NiO_(x)electrode fabricated via a modified dip coating method exhibited excellent OER performance in acidic media,and neutral media for CO_(2)reduction reaction.We combined in-situ/operando X-ray absorption near-edge structure and on-line inductively coupled plasma mass spectrometry studies to unveil the role of the Ni introduced in the Ru oxide.We propose that the Ni not only transforms the electronic structure of the Ru oxide,but also produces a large number of oxygen vacancies by distorting the oxygen lattice structure at low overpotentials,increasing the participation of lattice oxygen for OER.This work demonstrates the real behavior of bimetallic oxide materials under applied potentials and provides new insights into the development of efficient electrocatalysts. 展开更多
关键词 Oxygen evolution reaction Ru electrode Ni electrode Oxygen vacancies In-situ/Operando studies
下载PDF
Uniform Metal Sulfide@N-doped Carbon Nanospheres for Sodium Storage: Universal Synthesis Strategy and Superior Performance
20
作者 Kai Yang Hao Fu +5 位作者 Yixue Duan Manxiang Wang Minh Xuan Tran Joong Kee Lee Woochul Yang Guicheng Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期389-396,共8页
Nitrogen-doped carbon-coated transition-metal sulfides(TMS@NCs)have been considered as efficient anodes for sodium-ion batteries.However,the uncontrollable morphology and weak core-shell binding forces significantly l... Nitrogen-doped carbon-coated transition-metal sulfides(TMS@NCs)have been considered as efficient anodes for sodium-ion batteries.However,the uncontrollable morphology and weak core-shell binding forces significantly limit the sodium storage performance and life.Herein,based on the reversible ring-opening reaction of the epoxy group of the tertiary amino group-rich epoxide cationic polyacrylamide(ECP)at the beginning of hydrothermal process(acidic environment)and the irreversible ring-opening(cross-linking reactions)at the late hydrothermal period(alkaline environment),47 nm-sized ZnS@NCs were prepared via a one-pot hydrothermal process.During this process,the covalent bonds formed between the ZnS core and elastic carbon shell significantly improved the mechanical and chemical stabilities of ZnS@NC.Benefiting from the nanosize,fast ion/electron transfer,and high stability,ZnS@NC exhibited a high reversible capacity of 421.9 mAh g^(−1) at a current density of 0.1 A g^(−1) after 1000 cycles and a superior rate capability of 273.8 mAh g^(−1) at a current density of 5 A g^(−1).Moreover,via this universal synthesis strategy,a series of TMS@NCs,such as MoS_(2)@NC,NiS@NC,and CuS@NC were developed with excellent capacity and cyclability. 展开更多
关键词 anode materials core-shell structure nitrogen-doped carbon ring-opening reaction transition-metal sulfide
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部