Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a...Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a cold test and tuning procedures are described.The final measured S11 curves under the required bandwidth are less than-32.0 and-26.9 dB for alumina and beryllia windows,respectively.The windows are tested up to CW 143 kW for traveling waves and CW 110 kW for standing waves using a solid-state amplifier as an RF power source.Multipactor simulations for windows and benchmark studies for the thermal analysis of ceramic disks are introduced.展开更多
文摘Radio frequency windows are developed and evaluated for a 650 MHz continuous-wave multibeam klystron.Thin-pillbox windows with alumina and beryllia disks are designed with an average RF power of CW 400 kW.Results of a cold test and tuning procedures are described.The final measured S11 curves under the required bandwidth are less than-32.0 and-26.9 dB for alumina and beryllia windows,respectively.The windows are tested up to CW 143 kW for traveling waves and CW 110 kW for standing waves using a solid-state amplifier as an RF power source.Multipactor simulations for windows and benchmark studies for the thermal analysis of ceramic disks are introduced.