In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause e...In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects.展开更多
Bone tissue engineering aims to use biodegrade able scaffolds to replace damaged tissue. This scaffold must be gradually degraded and replaced by tissue as similar as possible to the original one. In this work a hybri...Bone tissue engineering aims to use biodegrade able scaffolds to replace damaged tissue. This scaffold must be gradually degraded and replaced by tissue as similar as possible to the original one. In this work a hybrid porous scaffold containing chitosan, polyvinyl alcohol and bioactive glass was successfully obtained and subsequently characterized by scanning electron microscopy. The scaffold presented satisfactory pore size range and open interconnected pores, which are essential for tissue ingrowth. A cytotoxicity assay showed that this biomaterial allows adequate cell viability, so that it was considered suitable for an in vivo experiment. Promising results were obtained with the implant of the scaffold in an experimental model of a New Zealand rabbit femur bone lesion. Clinical and biochemical parameters measured such as complete blood count, total serum proteins, albumin, alanine aminotransferase and aspartate aminotransferase were similar between animals in the control group at all time periods studied. Histological and histometric studies showed that the scaffold was coated with a cement-like substance, exhibiting many areas of mineralized structures. Very few osteocyte-like cells or lining-like cells were found inside the amorphous mineralized deposit. In vivo results allow us to consider this scaffold as a promising biomaterial to be applied in bone tissue engineering.展开更多
文摘In the medical and dental field, the importance and need for the study of materials and drugs for use as bone grafts or regeneration in injured areas due to the presence of fractures, infections or tumors that cause extensive loss of bone tissue is observed. Bone is a specialized, vascularized and dynamic connective tissue that changes throughout the life of the organism. When injured, it has a unique ability to regenerate and repair without the presence of scars, but in some situations, due to the size of the defect, the bone tissue does not regenerate completely. Thus, due to its importance, there is a great development in therapeutic approaches for the treatment of bone defects through studies that include autografts, allografts and artificial materials used alone or in association with bone grafts. Pharmaceuticals composed of biomaterials and osteogenic active substances have been extensively studied because they provide potential for tissue regeneration and new strategies for the treatment of bone defects. Statins work as specific inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoAreductase). They represent efficient drugs in lowering cholesterol, as they reduce platelet aggregation and thrombus deposition;in addition, they promote angiogenesis, reduce the β-amyloid peptide related to Alzheimer’s disease and suppress the activation of T lymphocytes. Furthermore, these substances have been used in the treatment of hypercholesterolemia and coronary artery disease. By inhibiting HMG-CoAreductase, statins not only inhibit cholesterol synthesis, but also exhibit several other beneficial pleiotropic effects. Therefore, there has been increasing interest in researching the effects of statins, including Simvastatin, on bone and osteometabolic diseases. However, statins in high doses cause inflammation in bone defects and inhibit osteoblastic differentiation, negatively contributing to bone repair. Thus, different types of studies with different concentrations of statins have been studied to positively or negatively correlate this drug with bone regeneration. In this review we will address the positive, negative or neutral effects of statins in relation to bone defects providing a comprehensive understanding of their application. Finally, we will discuss a variety of statin-based drugs and the ideal dose through a theoretical basis with preclinical, clinical and laboratory work in order to promote the repair of bone defects.
文摘Bone tissue engineering aims to use biodegrade able scaffolds to replace damaged tissue. This scaffold must be gradually degraded and replaced by tissue as similar as possible to the original one. In this work a hybrid porous scaffold containing chitosan, polyvinyl alcohol and bioactive glass was successfully obtained and subsequently characterized by scanning electron microscopy. The scaffold presented satisfactory pore size range and open interconnected pores, which are essential for tissue ingrowth. A cytotoxicity assay showed that this biomaterial allows adequate cell viability, so that it was considered suitable for an in vivo experiment. Promising results were obtained with the implant of the scaffold in an experimental model of a New Zealand rabbit femur bone lesion. Clinical and biochemical parameters measured such as complete blood count, total serum proteins, albumin, alanine aminotransferase and aspartate aminotransferase were similar between animals in the control group at all time periods studied. Histological and histometric studies showed that the scaffold was coated with a cement-like substance, exhibiting many areas of mineralized structures. Very few osteocyte-like cells or lining-like cells were found inside the amorphous mineralized deposit. In vivo results allow us to consider this scaffold as a promising biomaterial to be applied in bone tissue engineering.