Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to conv...Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.展开更多
The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a ...The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.展开更多
Natural minerals,abundant and easily obtained through simple physical processing,offer a cost-effective and environmentally friendly solution for dyeing wastewater disposal and air pollution treatment.This study inves...Natural minerals,abundant and easily obtained through simple physical processing,offer a cost-effective and environmentally friendly solution for dyeing wastewater disposal and air pollution treatment.This study investigates the photocatalytic removal of NO using natural different types of dyes,loaded on natural sand,under visible light illumination.By examining various coating concentrations of dyes and sand weights,we discovered that sand loaded with Rhodamine B(RhB)exhibits high activity for the photo-oxidation of NO.A combination results of X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FTIR)and thermogravimetric(TG)analyses confirm the presence of SiO_(2),CaCO_(3),Al_(2)O_(3)and iron oxides as the main components of the sand.Furthermore,studying RhB-loaded individual components reveals that CaCO_(3)plays a crucial role in enhancing the NO removal rate.Experimental results and theoretical calculations demonstrate the establishment of a directional charge transfer channel from CaCO_(3)to RhB,facilitating the adsorption and activation of molecular NO and O_(2).This work not only promotes the utilization of natural mineral resources but also enriches the fields of environmental photochemistry and semiconductor photocatalysis.展开更多
With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalyt...With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.展开更多
In the blossoming field of Cd-free semiconductor quantum dots(QDs),ternary Ⅰ-Ⅲ-VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water,t...In the blossoming field of Cd-free semiconductor quantum dots(QDs),ternary Ⅰ-Ⅲ-VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water,their high photoluminescence(PL)quantum yields(QYs)in the red and near infrared(NIR)region,and their inherently low toxicity.Moreover,their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime.To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties,we assessed and modelled the synthesis of high-quality MPA-capped AglnS2/ZnS(AlS/ZnS)QDs.Systematically refined parameters included reaction time,temperature,Ag:In ratio,S:In ratio,Zn:In ratio,MPA:ln ratio,and pH using a design-of-experiment approach.Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters,maximum PL wavelength,QY,and PL lifetime as well as the elemental composition in terms of Ag:ln:Zn ratio.With these experimental data-based models,MPA:ln and Ag:ln ratios and pH values were identified as the most important synthesis parameters for PL control and an insight into the connection of these parameters could be gained.Subsequently,the experimental conditions to synthetize QDs with tunable emission and high QY were predicted.The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AlS/ZnS QDs with defined PL features.This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs.展开更多
This work investigates the effect of cerium substation into strontium cobalt perovskites(CeSrCoO)for the oxidative degradation of OrangeⅡ(OII)in dark ambient conditions without the aid of any external stimulants such...This work investigates the effect of cerium substation into strontium cobalt perovskites(CeSrCoO)for the oxidative degradation of OrangeⅡ(OII)in dark ambient conditions without the aid of any external stimulants such as light,heating or chemical additives.The OII degradation rate by CeSrCoO reached 65%in the first hour,whilst for the blank sample without cerium(SrCoO)took over 2 hr to reach the same level of OII degradation.Hence,the cerium substitution improved the catalytic activity of the perovskite material,mainly associated with the Ce0.1Sr0.9CoO3 perovskite phase.Upon contacting CeSrCoO,the-N=Nazo bonds of the OII molecules broke down resulting in electron donation and the formation of by-products.The electrons are injected into the CeSrCoO and resulted in a redox pair of Co3+/Co2+,establishing a bridge for the electron transfer between OII and the catalysts.Concomitantly,the electrons also formed reactive species(·OH)responsible for OII degradation as evidenced by radical trapping experiment.Reactive species were formed via the reaction between 02 and donated electrons from OII with the aid of cobalt redox pair.As the prepared materials dispensed with the need for light irradiation and additional oxidants,it opens a window of environmental applications for treating contaminated wastewaters.展开更多
Sorption has been proposed as a promising approach towards a sustainable water decontamination and recently to the recycling of rare earth elements(REE).Although living seaweed have been shown to be capable of removin...Sorption has been proposed as a promising approach towards a sustainable water decontamination and recently to the recycling of rare earth elements(REE).Although living seaweed have been shown to be capable of removing REE from contaminated solutions,no studies have yet compared the effects of REE competition on sorption onto different groups of seaweed.These effects were analysed in the present study by exposing six living seaweeds(Ulva lactuca,Ulva intestinalis,Fucus spiralis,Fucus vesiculosus,Gracilaria sp.and Osmundea pinnatifida)(3 g/L,fresh weight) to mono-element and multi-element solutions of Y,La,Ce,Pr,Nd,Eu,Gd,Tb and Dy(1 μmol/L).Results show a preference towards light REE in mono-element solutions,which is reduced when in competition with other REE.The competitive effect is less pronounced in heavy REE indicating that these are still able to bind to the macroalgae despite the presence of competing ions.Contrary to water content(%),seaweed specific surface area(cm^(2)/g) shows to be an important factor in the sorption of REE,since larger surface area is associated with higher removal and larger competitive effect.展开更多
基金support provided by the National Natural Science Foundation of China(Nos.42277485,21976141,22102123)the Department of Science and Technology of Hubei Province(No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Nos.STRZ202202,STRZ202101)is gratefully acknowledged.S.A.C.C.acknowledges Fundação para a Ciência e a Tecnologia(FCT)Portuqal for Scientific Employment Stimulus-Institutional Call(CEEC-INST/00102/2018)and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(UIDB/50006/2020,UIDP/5006/2020).
文摘Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.
基金National Natural Science Foundation of China,Grant/Award Numbers:42277485,21976141,22272197,22102184,22102136,U22A20392Natural Science Foundation of Hubei Province,Grant/Award Numbers:2022CFB1001,2021CFA034+1 种基金Department of Education of Hubei Province,Grant/Award Numbers:Q20221701,Q20221704Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy,Grant/Award Number:YLU-DNL Fund 2022008。
文摘The electrocatalytic synthesis of C-N coupling compounds from CO_(2) and nitrogenous species not only offers an effective avenue to achieve carbon neutral-ity and reduce environmental pollution,but also establishes a route to synthesize valuable chemicals,such as urea,amide,and amine.This innovative approach expands the application range and product categories beyond simple carbona-ceous species in electrocatalytic CO_(2) reduction,which is becoming a rapidly advancing field.This review summarizes the research progress in electrocatalytic urea synthesis,using N_(2),NO_(2)^(-),and NO_(3)^(-)as nitrogenous species,and explores emerging trends in the electrosynthesis of amide and amine from CO_(2) and nitro-gen species.Additionally,the future opportunities in this field are highlighted,including electrosynthesis of amino acids and other compounds containing C-N bonds,anodic C-N coupling reactions beyond water oxidation,and the catalytic mechanism of corresponding reactions.This critical review also captures the insights aimed at accelerating the development of electrochemical C-N coupling reactions,confirming the superiority of this electrochemical method over the traditional techniques.
基金financially supported by the National Natural Science Foundation of China(Nos.52370109,51808080 and 21707036)China Postdoctoral Science Foundation(No.2022M710830)+8 种基金the Venture and Innovation Support Program for Chongqing Overseas Returnees(No.cx2022005)the Natural Scienceof CQ CSTC(No.CSTB2022NSCQMSX1267)Chongqing Natural Science Postdoctoral Fund(No.cstc2019jcyj-bsh0107)the Research Project of Chongqing Education Commission Foundation(Nos.KJQN201800826,KJQN202000818 and KJQN202200830&KJQN201800840)the Science and Technology Research Program of Chongqing Municipal Education Commission of China(No.KJZD-K202100801)the Post-doctoral Program Funded by Chongqing,Chongqing University Innovation Research Group project(No.CXQT21023)the High Level Talent Scientific Research Startup Project of Chongqing Technology and Business University(No.1956044)support from FCT/MCTES(Fundacao para a Ciência e Tecnologia and Ministério da Ciência,Tecnologia e Ensino Superior)(Nos.UIDB/50006/2020 and UIDP/50006/2020)for the Scientific Employment Stimulus-Institutional Call(No.CEECINST/00102/2018)。
文摘Natural minerals,abundant and easily obtained through simple physical processing,offer a cost-effective and environmentally friendly solution for dyeing wastewater disposal and air pollution treatment.This study investigates the photocatalytic removal of NO using natural different types of dyes,loaded on natural sand,under visible light illumination.By examining various coating concentrations of dyes and sand weights,we discovered that sand loaded with Rhodamine B(RhB)exhibits high activity for the photo-oxidation of NO.A combination results of X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FTIR)and thermogravimetric(TG)analyses confirm the presence of SiO_(2),CaCO_(3),Al_(2)O_(3)and iron oxides as the main components of the sand.Furthermore,studying RhB-loaded individual components reveals that CaCO_(3)plays a crucial role in enhancing the NO removal rate.Experimental results and theoretical calculations demonstrate the establishment of a directional charge transfer channel from CaCO_(3)to RhB,facilitating the adsorption and activation of molecular NO and O_(2).This work not only promotes the utilization of natural mineral resources but also enriches the fields of environmental photochemistry and semiconductor photocatalysis.
基金financially supported by the National Natural Science Foundation of China(51808080)China Postdoctoral Science Foundation(2022M710830)+4 种基金the Venture and Innovation Support Program for Chongqing Overseas Returnees(cx2022005)the Natural Science Foundation Project of CQ CSTC(CSTB2022NSCQ-MSX1267)the Science and Technology Research Program of Chongqing Municipal Education Commission of China(KJQN201800826&KJZD-K202100801)the Post-doctoral Program Funded by Chongqing,Chongqing University Innovation Research Group project(CXQT21023)Funda??o para a Ciência e a Tecnologia/Ministério da Ciência,Tecnologia e Ensino Superior(Portuguese Foundation for Science and Technology/Ministery for Science,Technology and Higher Education)(CEECINST/00102/2018,UIDB/50006/2020 and UIDP/50006/2020 from LAQV)。
基金the following organisations is gratefully acknowledged:the National Natural Science Foundation of China(Grant Nos.21976141,22102123,42277485)the Department of Science and Technology of Hubei Province(Grant No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Grant Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Grant No.STRZ202101)and the South Africa National Research Foundation(No.137947)SACC acknowledges Fundação para a Ciência e a Tecnologia(FCT),Portugal for Scientific Employment Stimulus-Institutional Call(Grant No.CEECINST/00102/2018)Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(Grant Nos.UIDB/50006/2020 and UIDP/5006/2020).
文摘With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.
基金This work received financial support from the European Union(FEDER funds POCI/01/0145/FEDER/007265)National Funds(FCT/MEC,Fundacao para a Ciencia e Tecnologia and Ministerio da Educacao e Ciencia)under the Partnership Agreement PT2020 UID/QUI/50006/2013 and through the FCT PhD Programmes and by Programa Operacional Potencial Humano(POCH)+2 种基金specifically by the BiotechHealth Programme(Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences),reference PD/00016/2012.J.X.S.thanks FCT and POPH for his PhD grant(SFRH/BD/98105/2013)K.D.W.acknowledges the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.846764URG gratefully acknowledges financial support by the German Research Council(DFG,grant RE1203/12-3).
文摘In the blossoming field of Cd-free semiconductor quantum dots(QDs),ternary Ⅰ-Ⅲ-VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water,their high photoluminescence(PL)quantum yields(QYs)in the red and near infrared(NIR)region,and their inherently low toxicity.Moreover,their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime.To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties,we assessed and modelled the synthesis of high-quality MPA-capped AglnS2/ZnS(AlS/ZnS)QDs.Systematically refined parameters included reaction time,temperature,Ag:In ratio,S:In ratio,Zn:In ratio,MPA:ln ratio,and pH using a design-of-experiment approach.Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters,maximum PL wavelength,QY,and PL lifetime as well as the elemental composition in terms of Ag:ln:Zn ratio.With these experimental data-based models,MPA:ln and Ag:ln ratios and pH values were identified as the most important synthesis parameters for PL control and an insight into the connection of these parameters could be gained.Subsequently,the experimental conditions to synthetize QDs with tunable emission and high QY were predicted.The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AlS/ZnS QDs with defined PL features.This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs.
基金the China Scholarship Council and The University of Queensland scholarshipsAustralian Research Council(ARC)financial support(No.FT130100405)support from the ARC via the Future Fellowship Program(No.FT130100405)
文摘This work investigates the effect of cerium substation into strontium cobalt perovskites(CeSrCoO)for the oxidative degradation of OrangeⅡ(OII)in dark ambient conditions without the aid of any external stimulants such as light,heating or chemical additives.The OII degradation rate by CeSrCoO reached 65%in the first hour,whilst for the blank sample without cerium(SrCoO)took over 2 hr to reach the same level of OII degradation.Hence,the cerium substitution improved the catalytic activity of the perovskite material,mainly associated with the Ce0.1Sr0.9CoO3 perovskite phase.Upon contacting CeSrCoO,the-N=Nazo bonds of the OII molecules broke down resulting in electron donation and the formation of by-products.The electrons are injected into the CeSrCoO and resulted in a redox pair of Co3+/Co2+,establishing a bridge for the electron transfer between OII and the catalysts.Concomitantly,the electrons also formed reactive species(·OH)responsible for OII degradation as evidenced by radical trapping experiment.Reactive species were formed via the reaction between 02 and donated electrons from OII with the aid of cobalt redox pair.As the prepared materials dispensed with the need for light irradiation and additional oxidants,it opens a window of environmental applications for treating contaminated wastewaters.
基金Project supported by National Funds(OE),through Fundacao para a Ciencia e a Tecnologia(FCT),I.P.,in the framework contract foreseen in the numbers 4,5 and 6 of the article 23,of the Decree-Law 57/2016,of August 29,changed by Law 57/2017,of July 19,benefited by Bruno HenriquesFCT/MEC through national funds,the co-funding by the FEDER an European Regional Development Fund,within the PT2020 Partnership Agreement and Compete 2020 by the financial support to REQUIMTE,CESAM and CIIMAR(UIDB/50006/2020,UIDB/50017/2020+UIDP/50017/2020,UID/Multi/04423/2019,respectively)。
文摘Sorption has been proposed as a promising approach towards a sustainable water decontamination and recently to the recycling of rare earth elements(REE).Although living seaweed have been shown to be capable of removing REE from contaminated solutions,no studies have yet compared the effects of REE competition on sorption onto different groups of seaweed.These effects were analysed in the present study by exposing six living seaweeds(Ulva lactuca,Ulva intestinalis,Fucus spiralis,Fucus vesiculosus,Gracilaria sp.and Osmundea pinnatifida)(3 g/L,fresh weight) to mono-element and multi-element solutions of Y,La,Ce,Pr,Nd,Eu,Gd,Tb and Dy(1 μmol/L).Results show a preference towards light REE in mono-element solutions,which is reduced when in competition with other REE.The competitive effect is less pronounced in heavy REE indicating that these are still able to bind to the macroalgae despite the presence of competing ions.Contrary to water content(%),seaweed specific surface area(cm^(2)/g) shows to be an important factor in the sorption of REE,since larger surface area is associated with higher removal and larger competitive effect.