Monitoring the extra-high-voltage transmission line corridor(EHVTLC)in mountains is critical for safe smart-grid operation.However,the transmission lines are so narrow that they are difficult to recognize using multis...Monitoring the extra-high-voltage transmission line corridor(EHVTLC)in mountains is critical for safe smart-grid operation.However,the transmission lines are so narrow that they are difficult to recognize using multispectral satellite images with a spatial resolution of 10 m.In this study,we developed a new method using the red band–shadow-eliminated vegetation index(SEVI)–blue band(RSB)composite image to enhance the EHVTLC in green mountains(named RSB-enhancement method).Using this method,the EHVTLC becomes evident in the false-color synthesis of the RSB composite of the Sentinel-2 image.Then,we recognized and extracted approximately 342.45 km of the EHVTLC in a mountainous region of Fuzhou City,China,including a 46.73 km three-parallel-lane segment of 1000 kV and a 295.72 km two-parallel-lane segment of 500 kV.Spatial analysis shows that the SEVI mean difference between the EHVTLC and the buffer zone reaches approximately 10%,and three landslides and 2.66 km^(2) soil erosion reside in the buffer zone which area is approximately 73.67 km^(2).Finally,the RSB-enhancement method can be used in other satellite images with spatial resolutions of greater than 10 m for enhancement and recognition the transmission line corridors in green mountains.展开更多
基金supported by the Science and Technology Plan Leading Project of Fujian Province,China[grant num-ber 2021Y0005]Water Conservancy Science and Technology Project of Fujian Province,China[grant number MSK202301].
文摘Monitoring the extra-high-voltage transmission line corridor(EHVTLC)in mountains is critical for safe smart-grid operation.However,the transmission lines are so narrow that they are difficult to recognize using multispectral satellite images with a spatial resolution of 10 m.In this study,we developed a new method using the red band–shadow-eliminated vegetation index(SEVI)–blue band(RSB)composite image to enhance the EHVTLC in green mountains(named RSB-enhancement method).Using this method,the EHVTLC becomes evident in the false-color synthesis of the RSB composite of the Sentinel-2 image.Then,we recognized and extracted approximately 342.45 km of the EHVTLC in a mountainous region of Fuzhou City,China,including a 46.73 km three-parallel-lane segment of 1000 kV and a 295.72 km two-parallel-lane segment of 500 kV.Spatial analysis shows that the SEVI mean difference between the EHVTLC and the buffer zone reaches approximately 10%,and three landslides and 2.66 km^(2) soil erosion reside in the buffer zone which area is approximately 73.67 km^(2).Finally,the RSB-enhancement method can be used in other satellite images with spatial resolutions of greater than 10 m for enhancement and recognition the transmission line corridors in green mountains.