期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Water-Based Environmentally Friendly Pesticide Formulations Based on Cyclodextrin/Pesticide Loading System
1
作者 Xinyu Guo Zhe Sun +5 位作者 Rui Zhao Hongyi Shang Jiangyu Liu Yong Xu Laihua Liu Xuemin Wu 《Journal of Renewable Materials》 SCIE EI 2023年第2期777-789,共13页
Difenoconazole(DIF)is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides.However,the water solubility of DIF is so poor that its application is limited in plant protection.In add... Difenoconazole(DIF)is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides.However,the water solubility of DIF is so poor that its application is limited in plant protection.In addition,the conventional formulations of DIF always contain abundant organic solvents,which may cause pollution of the environment.In this study,two DIF/cyclodextrins(CDs)inclusion complexes(ICs)were successfully prepared,which were DIF/β-CD IC and DIF/hydroxypropyl-β-CD IC(DIF/HP-β-CD IC).The effect of cyclodextrins on the water solubility and the antifungal effect of liposoluble DIF pesticide were investigated.According to the phase solubility test,the molar ratio and apparent stability constant of ICs were obtained.Fourier transform infrared spectroscopy,thermal gravity analysis,X-ray diffraction and scanning electron microscopy were used systematically to characterize the formation and characteristics of ICs.The results noted that DIF successfully entered the cavities of two CDs.In addition,the antifungal effect test proved the better performance of DIF/HP-β-CD IC,which exceeded that of DIF emulsifiable concentrate.Therefore,our study provides informative direction for the intelligent use of liposoluble pesticides with cyclodextrins to develop water-based environmentally friendly formulations. 展开更多
关键词 Water-based environmentally friendly pesticide formulations DIFENOCONAZOLE Β-CYCLODEXTRIN HYDROXYPROPYL-Β-CYCLODEXTRIN inclusion complex preparation characterization
下载PDF
Identification of Quantitative Trait Loci for Phytic Acid Concentration in Maize Grain Under Two Nitrogen Conditions 被引量:3
2
作者 LIU Jian-chao HUANG Ya-qun +4 位作者 MAWen-qi ZHOU Jin-feng BIAN Fen-ru CHEN Fan-jun MI Guo-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期765-772,共8页
Phytic acid (PA) is the main storage form of phosphorus (P) in seeds. It can form insoluble complexes with microelements, thereby reducing their bioavailability for animals. Identification of quantitative trait lo... Phytic acid (PA) is the main storage form of phosphorus (P) in seeds. It can form insoluble complexes with microelements, thereby reducing their bioavailability for animals. Identification of quantitative trait loci (QTLs) associated with grain PA concentration (PAC) is essential to improve this trait without affecting other aspects of grain nutrition such as protein content. Using a recombinant inbred line (RIL) population, we mapped QTL for grain PAC, as well as grain nitrogen concentration (NC) and P concentration (PC) in maize under two N conditions in 2 yr. We detected six QTLs for PAC. The QTL for PAC on chromosome 4 (phi072-umc 1276) was identified under both low-N and high-N treatments, and explained 13.2 and 15.4% of the phenotypic variance, respectively. We identified three QTLs for grain NC, none of which were in the same region as the QTLs for PAC. We identified two QTLs for PC in the low-N treatment, one of which (umc1710-umc2197) was in the same interval as the QTL for PAC under high-N conditions. These results suggested that grain PAC can be improved without affecting grain NC and inorganic PC. 展开更多
关键词 MAIZE NITROGEN PHOSPHORUS phytic acid QTL
下载PDF
Phenotypic characterization and genetic mapping of the dwarf mutant m34 in maize 被引量:2
3
作者 LI Jie-ping Soomro Ayaz Ali +3 位作者 XIAO Gui CHEN Fan-jun YUAN Li-xing GU Ri-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第5期948-957,共10页
Plant height is one of the most important agronomic traits associated with yield in maize.In this study,a gibberellins(GA)-insensitive dwarf mutant,m34,was screened from inbred line Ye478 by treatment with the chemica... Plant height is one of the most important agronomic traits associated with yield in maize.In this study,a gibberellins(GA)-insensitive dwarf mutant,m34,was screened from inbred line Ye478 by treatment with the chemical mutagen ethylmethanesulfonate(EMS).Compared to Ye478,m34 showed a dwarf phenotype with shorter internodes,and smaller leaf length and width,but with similar leaf number.Furthermore,m34 exhibited smaller guard cells in internodes than Ye478,suggesting that smaller cells might contribute to its dwarf phenotype.Genetic analysis indicated that the m34 dwarf phenotype was controlled by a recessive nuclear gene.An F2 population derived from a cross between m34 and B73 was used for mutational gene cloning and this gene was mapped to a chromosome region between umc2189 and umc1553 in chromosome 1 bin1.10,which harbored a previously identified dwarf gene Zm VP8.Sequencing analysis showed a nucleotide substitution(G1606 to A1606)in the sixth exon of ZmVP8,which resulted in an amino acid change(E531 to K531)from Ye478 to m34.This amino acid change resulted in anα-helix changing to aβ-sheet in the secondary protein structure and the‘SPEC’domain changed to a‘BOT1NT’domain in the tertiary protein structure.Taken together,these results suggested that m34 is a novel allelic mutant originally derived from Ye478 that is useful for further ZmVP8 functional analysis in maize. 展开更多
关键词 DWARF PLANT HEIGHT GA APPLICATION ZmVP8 MAIZE
下载PDF
Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency 被引量:9
4
作者 Pengcheng Li Zhongjuan Zhuang +7 位作者 Hongguang Cai Shuai Cheng Ayaz Ali Soomro Zhigang Liu Riliang Gu Guohua Mi Lixing Yuan Fanjun Chen 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第3期242-253,共12页
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population... Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency. 展开更多
关键词 Genotype-environment interactions nitrogen stress quantitative trait locus root morphology root plasticity Zea mays L
原文传递
A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis 被引量:13
5
作者 Ricardo F.H. Giehl Alberto M. Laginha +3 位作者 Fengying Duan Doris Rentsch Lixing Yuan Nicolaus von Wirén 《Molecular Plant》 SCIE CAS CSCD 2017年第11期1449-1460,共12页
Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiol... Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients. 展开更多
关键词 nitrogen uptake nitrogen translocation ammonium assimilation xylem loading ammonia transport ammonium influx
原文传递
Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize 被引量:4
6
作者 Riliang Gu Fanjun Chen +10 位作者 Lizhi Long Hongguang Cai Zhigang Liu Jiabo Yang Lifeng Wang Huiyong Li Junhui Li Wenxin Liu Guohua Mi Fusuo Zhang Lixing Yuan 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第11期663-672,共10页
Root system architecture (RSA) plays an important role in phosphorus (P) acquisition, but enhancing P use efficiency (PUE) in maize via genetic manipulation of RSA has not yet been reported. Here, using a maize ... Root system architecture (RSA) plays an important role in phosphorus (P) acquisition, but enhancing P use efficiency (PUE) in maize via genetic manipulation of RSA has not yet been reported. Here, using a maize recombinant inbred line (RIL) population, we investigated the genetic relationships between PUE and RSA, and developed P-efficient lines by selection of quantitative trait loci (QTLs) that coincide for both traits. In low-P (LP) fields, P uptake efficiency (PupE) was more closely correlated with PUE (r = 0.48 -0.54), and RSA in hydroponics was significantly related to PupE (r=0.25-0.30) but not to P utilization efficiency (PutE). QTL analysis detected a chromosome region where two QTLs for PUE, three for PupE and three for RSA were assigned into two QTL clusters, Cl-bin3.04a and Cl-bin3.04b. These QTLs had favorable effects from alleles derived from the large-rooted and high-PupE parent. Marker-assisted selection (MAS) identified nine advanced backcross-derived lines carrying Cl-bin3.04a or Cl-bin3.04b that displayed mean increases of 22%-26% in PUE in LP fields. Furthermore, a line L224 pyramiding Cl- binB.04a and Cl-bin3.04b showed enhanced PupE, relying mainly on changes in root morphology, rather than root physiology, under both hydroponic and field conditions. These results highlight the physiological and genetic contributions of RSA to maize PupE, and provide a successful study case of developing P-efficient crops through QTL-based selection. 展开更多
关键词 MAIZE Quantitative trait loci PHOSPHORUS Root system architecture Marker-assisted selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部