Tungsten is a promising candidate for plasma-facing materials to cover the surface of the divertor plate in the design of an international thermonuclear experimental reactor (ITER). Copper as a heat sink material se...Tungsten is a promising candidate for plasma-facing materials to cover the surface of the divertor plate in the design of an international thermonuclear experimental reactor (ITER). Copper as a heat sink material serves to transfer heat excellently. Divertor mock-ups with W/Cu graded interlayers were designed to reduce thermal stresses. Thermally induced stresses and temperature in a W/Cu divertor mock-up were analyzed using the finite element method. The graded structures with different exponents p and thick- nesses were designed and discussed. The conclusions drawn from these analyses are that thermal stresses reach the minimum and the temperature is suitable when exponent p is 1.5 and the thickness of five graded interlayers is 5 mm.展开更多
基金This work was financially supported by the National High-Tech Research and Development Program of China ("863" Program)(No.2003AA305340)
文摘Tungsten is a promising candidate for plasma-facing materials to cover the surface of the divertor plate in the design of an international thermonuclear experimental reactor (ITER). Copper as a heat sink material serves to transfer heat excellently. Divertor mock-ups with W/Cu graded interlayers were designed to reduce thermal stresses. Thermally induced stresses and temperature in a W/Cu divertor mock-up were analyzed using the finite element method. The graded structures with different exponents p and thick- nesses were designed and discussed. The conclusions drawn from these analyses are that thermal stresses reach the minimum and the temperature is suitable when exponent p is 1.5 and the thickness of five graded interlayers is 5 mm.