期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Contribution of Satellite Observations in the Optical and Microphysical Characterization of Aerosols in Burkina Faso, West Africa
1
作者 Nébon Bado Serge Dimitri Bazyomo +4 位作者 Germain Wende Pouiré Ouedraogo Bruno Korgo Mamadou Simina Dramé Florent P. Kieno Sié Kam 《Atmospheric and Climate Sciences》 2024年第1期154-171,共18页
In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitori... In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer. 展开更多
关键词 AERONET Airborne Sensors AEROSOL Optical and Microphysical Properties
下载PDF
Influence of Heavy Fuel Oil on the Thermo-Physical and Erodibility Properties of Earthen Materials
2
作者 Ohindemi G. Yameogo Donzala D. Some +3 位作者 Souleymane Ouedraogo Philbert Nshimiyimana Sié Kam Dieudonné J. Bathiebo 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期37-48,共12页
This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sen... This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sensitive to water. The interest of this study is to determine erodibility, water content, while highlighting the influence of the porosity accessible by water on thermal diffusion in construction material containing heavy fuel oil. The heavy fuel oil was mixed with a silty-clayey soil, in different proportions, and water to make bricks samples on which tests were carried out. At the end of the experimental tests, it appears that the water content increases gradually, but not significantly with the addition of heavy fuel oil, which causes a slight increase in the speed of heat propagation through the material with reduced porosity, particularly those containing higher quantities of heavy fuel oil. Conversely, we note a good performance of heavy fuel oil in terms of water resistance properties such as porosity accessible by water and erodibility. This allows us to conclude that the mixture of heavy fuel oil and silty-clayey soil used as a coating material could greatly reduce water infiltration into the walls of housing constructions with raw earthen materials. 展开更多
关键词 Porosity Accessible by Water ERODIBILITY Water Content Thermal Diffusion
下载PDF
Thermomechanical and Hydrous Effect of Heavy Fuel Oil in a Building Material Based on Silty Clayey Soil
3
作者 Ohindemi G.Yameogo Donzala D.Some +3 位作者 SiéKam Adamah Messan Takenori Hino DieudonnéJ.Bathiebo 《Journal of Civil Engineering and Architecture》 2023年第5期215-224,共10页
This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to wa... This study focuses on the use of heavy fuel oil in construction in Burkina Faso.Mixed with silty and/or clay soil,it is used as a coating to reinforce the walls of raw soil constructions which are very sensitive to water.The interest of this paper is to shed light on the thermomechanical and above all water effects of heavy fuel oil on a sample of silty clayey soil.To achieve this,we used heavy fuel oil added in different proportions to silty clayey soil,to make sample of bricks on which tests were carried out.At the end of the experimental tests carried out on materials made(bricks)with our soil sample,it appears that heavy fuel oil moderately reduces the mechanical resistance of bricks and slightly increases thermal diffusion through them.On the contrary,we note a very good water resistance of the bricks thanks to the heavy fuel oil,in particular their water absorption by capillarity.This confirms that the mixture of heavy fuel oil and a silty-clayey soil used as a coating makes it possible to prevent the infiltration of water into the walls of raw soil constructions.However,its use as a construction material does not guarantee very good mechanical resistance,and slightly increases thermal diffusion. 展开更多
关键词 Thermomechanical and hydrous effect heavy fuel oil building material silty clayey soil
下载PDF
Annual and Diurnal Variabilities in the Critical Frequency (foF2) during Geomagnetic Fluctuating Activity over Solar Cycles 21 and 22 at Ouagadougou 被引量:1
4
作者 Abidina Diabaté Frédéric Ouattara Jean Louis Zerbo 《Atmospheric and Climate Sciences》 2018年第4期435-445,共11页
Geomagnetic activity is characterized by four solar wind conditions. Each condition has specific impact on ionosphere. This paper review on fluctuating activity effects on ionosphere F2 layer through its critical freq... Geomagnetic activity is characterized by four solar wind conditions. Each condition has specific impact on ionosphere. This paper review on fluctuating activity effects on ionosphere F2 layer through its critical frequency foF2 variations. Under fluctuating wind conditions, we have investigated on annual, diurnal and seasonal variations of foF2 during solar cycles 21 and 22 phases covered by Ouagadougou ionosonde station data (Lat: 12.5&#176N;Long: 358.5&#176E;dip: 1.43&#176). Our investigations show that foF2 annual’ variability is in phase with solar cycle. The diurnal variation is “noon bite out” most of the time except for the solar maximum where we have a morning peak testifying to the fact that the vertical drift E × B is disturbed. The seasonal variations show that the fluctuating activity has no particular effect on certain characteristics of the equatorial ionosphere such as electrojet and vertical drift E × B. However, the increase of the electric field pre-reversal phenomenon in autumn is a characteristic effect observed during the fluctuating activity. 展开更多
关键词 Critical Frequency Solar Cycle Seasonal DIURNAL Fluctuating ACTIVITY
下载PDF
2D Modeling of Solar Cell Radial Junction: Study of Carriers Charge Density and Photocurrent Density in Static Mode under Monochromatic Illumination
5
作者 Moussa Ouédraogo Raguilignaba Sam +2 位作者 Alain Diasso Bernard Zouma François Zougmoré 《Energy and Power Engineering》 2020年第10期568-577,共10页
A theoretical study of a polysilicon solar cell with a radial junction in static regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described... A theoretical study of a polysilicon solar cell with a radial junction in static regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes density and photocurrent are found. The wavelength and structural parameters (base radius, emitter thickness) influences on charge carriers density and photocurrent are shown and examined. 展开更多
关键词 Electrons Density Holes Density Holes Photocurrent Radial Junction
下载PDF
Impact of the Thicknesses of the p and p+ Regions on the Electrical Parameters of a Bifacial PV Cell
6
作者 Ramatou Konate Bernard Zouma +3 位作者 Adama Ouedraogo Bruno Korgo Martial Zoungrana Sié Kam 《Energy and Power Engineering》 2022年第2期133-145,共13页
The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+<... The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+</sup> zone size influence are evaluated on the rear face of the polycrystalline back surface field bifacial silicon PV cell. The photocurrent density and photovoltage behaviors versus thickness of these regions are studied. From a three-dimensional grain of the polycrystalline bifacial PV cell, the magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power for simultaneous illumination on both sides. The photocurrent density, the photovoltage and electric power versus junction dynamic velocity decrease for different thicknesses of base and the p+</sup> region increases for simultaneous illumination on both sides. It is found that the thickness of the p+</sup> region at 0.1 μm and the base size at 100 μm allow reaching the best bifacial PV cell performances. Consequently, it is imperative to consider the reduction in the thickness of the bifacial PV cell for exhibition of better performance. This reduced the costs and increase production speed while increasing conversion efficiency. 展开更多
关键词 Doped p+ Region Bifacial PV Cell Photocurrent Density PHOTOVOLTAGE Polycrystalline Solar Cell
下载PDF
A 3D Modelling of Solar Cell’s Electric Power under Real Operating Point
7
作者 Mayoro Dieye Senghane Mbodji +3 位作者 Martial Zoungrana Issa Zerbo Biram Dieng Gregoire Sissoko 《World Journal of Condensed Matter Physics》 2015年第4期275-283,共9页
This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D mo... This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell’s electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell’s electric power with the junction recombination velocity give the maximum solar cell’s electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell’s electric power is studied. 展开更多
关键词 Electric Power GRAIN Size GRAIN BOUNDARY Recombination VELOCITY POLYCRYSTALLINE Solar Cell JUNCTION Recombination VELOCITY
下载PDF
Modelling Study of Magnetic Field’s Effects on Solar Cell’s Transient Decay
8
作者 Senghane Mbodji Martial Zoungrana +2 位作者 Issa Zerbo Biram Dieng Gregoire Sissoko 《World Journal of Condensed Matter Physics》 2015年第4期284-293,共10页
Experimental setup of transient decay which occurs between two steady state operating points is recalled. The continuity equation is resolved using both the junction dynamic velocity (Sf) and back side recombination v... Experimental setup of transient decay which occurs between two steady state operating points is recalled. The continuity equation is resolved using both the junction dynamic velocity (Sf) and back side recombination velocity (Sb). The transient excess minority carriers density appears as the sum of infinite terms. Influence of magnetic field on the transient excess minority carriers density and transient photo voltage is studied and it is demonstrated that the use of this technique is valid only when the magnetic field is lower than 0.001 T. 展开更多
关键词 SOLAR Cell Recombination Parameters Magnetic Field
下载PDF
2D Modeling of Solar Cell p-n Radial Junction: Study of Photocurrent Density and Quantum Efficiency in Static Mode under Monochromatic Illumination
9
作者 Raguilignaba Sam Alain Diasso +1 位作者 Bernard Zouma François Zougmoré 《Smart Grid and Renewable Energy》 2020年第12期191-200,共10页
<span style="font-family:Verdana;">A theoretical study of a polysilicon solar cell with a radial junction in </span><span style="font-family:Verdana;">static</span><span ... <span style="font-family:Verdana;">A theoretical study of a polysilicon solar cell with a radial junction in </span><span style="font-family:Verdana;">static</span><span style="font-family:Verdana;"> regime under monochromatic illumination is presented in this paper. The junction radial solar cell geometry is illustrated and described. The carriers’ diffusion equation is established and solved under quasi-neutral base assumption with boundaries conditions and Bessel equations. New analytical expressions of electrons and holes photocurrent density and quantum efficiency are found.</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">The wavelength and structural parameters (base radius, </span><span><span style="font-family:Verdana;">base thickness </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> wavelength) influences on photocurrent density and quantum </span></span><span style="font-family:Verdana;">efficiency are carried out and examined.</span></span></span></span> 展开更多
关键词 Grain Geometry Photocurrent Density Quantum Efficiency Radial Junction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部