The plant cell wall is a complex 3D network composed of polysaccharides, lignin and proteins. The knowledge of the structure and content of each cell wall polymer is a prerequisite to understand their functions during...The plant cell wall is a complex 3D network composed of polysaccharides, lignin and proteins. The knowledge of the structure and content of each cell wall polymer is a prerequisite to understand their functions during plant development and adaptation but also to optimise their industrial applications. The analysis of cell wall compounds is complicated by their multiple molecular interactions. In this review, we present numerous methods to purify, characterise and quantify proteins, polysaccharides and lignin from the wall. Two kinds of approaches are detailed: the first presents in vitro methods which involve the breakdown of the molecular linkages between polymers thanking to chemical, physical and/or enzymatic treatments. The second approach describes in situ methods that allow the cell wall polymer characterisation thanking to many analytical techniques coupled with microscopy. If microscopy is the common point of all of them, their development is associated with improvement of analytical techniques, increasing their power of resolution.展开更多
文摘The plant cell wall is a complex 3D network composed of polysaccharides, lignin and proteins. The knowledge of the structure and content of each cell wall polymer is a prerequisite to understand their functions during plant development and adaptation but also to optimise their industrial applications. The analysis of cell wall compounds is complicated by their multiple molecular interactions. In this review, we present numerous methods to purify, characterise and quantify proteins, polysaccharides and lignin from the wall. Two kinds of approaches are detailed: the first presents in vitro methods which involve the breakdown of the molecular linkages between polymers thanking to chemical, physical and/or enzymatic treatments. The second approach describes in situ methods that allow the cell wall polymer characterisation thanking to many analytical techniques coupled with microscopy. If microscopy is the common point of all of them, their development is associated with improvement of analytical techniques, increasing their power of resolution.