The reactivity and stability of seventeen (17) imidazo [1,2-a]pyridine N-acylhydrazone derivatives were investigated using density functional theory at the B3LYP/6-31+ G (d, p) level. Analysis of the molecular electro...The reactivity and stability of seventeen (17) imidazo [1,2-a]pyridine N-acylhydrazone derivatives were investigated using density functional theory at the B3LYP/6-31+ G (d, p) level. Analysis of the molecular electrostatic potential (MEP) and determination of the dual descriptor revealed that in most cases, the nitrogen atoms of the 6-πelectron conjugation, the oxygen, and the sulfur atom are nucleophilic site. Chemical reactivity of the compounds was assessed through analysis of frontier molecular orbitals (HOMO and LUMO), energy gap (Δℰ), chemical hardness (η), and the softness (S). Consequently, the compound 9e exhibited the lowest reactivity, least electron donating, and the highest stability. This comprehensive study offers valuable insights into the chemical behavior of these derivatives, crucial for further exploration and potential applications.展开更多
The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on ...The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.展开更多
This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
Industrial effluents from textile, tannery or printing activities often have a significant pollutant load composed of dyes that are difficult to biodegrade. These dyes pose a threat to the environment. To overcome thi...Industrial effluents from textile, tannery or printing activities often have a significant pollutant load composed of dyes that are difficult to biodegrade. These dyes pose a threat to the environment. To overcome this problem, various processes have been developed to eliminate these dyes in wastewater before their release into nature. Conventional biological or physical processes most often prove to be ineffective and expensive. It is therefore necessary to resort to other processes such as advanced oxidation processes (POA). This work therefore focuses on the study of the influence of clay in the degradation of Methylene Blue by the photo-Fenton process which is one of the advanced oxidation processes (POA), with the source of irradiation, natural light. To do this, two clays from Côte d’Ivoire referenced AB and Aga were the subject of a physicochemical and mineralogical characterization. The results showed that Aga clay is composed of 75.43% quartz, 12.72% kaolinite, 8.75% illite and 3.12% goethite and AB clay consists of 61, 36% kaolinite, 28.6% quartz and 10.10% illite. Under natural light irradiation the optimal amounts of Fenton reagents (iron: 10 mg;H2O2: 0.1 mL) were determined. Finally, the addition of clay to the photo-Fenton process made it possible to improve the degradation of the pollutant (Methylene Blue). Indeed, the yield increased from 92% for the photo-Fenton process to 98.43% with the addition of AB clay and 98.13% for the addition of Aga clay. The results of the degradation kinetics clearly show that the degradation follows the pseudo-second order kinetics with correlation coefficients greater than 0.99.展开更多
Gouania longipetala Hemsl. (Rhamnaceae) is a medicinal plant from Côte d’Ivoire used to treat many diseases like malaria, gastrointestinal infections and gout. Scientific research of aerial part revealed the pre...Gouania longipetala Hemsl. (Rhamnaceae) is a medicinal plant from Côte d’Ivoire used to treat many diseases like malaria, gastrointestinal infections and gout. Scientific research of aerial part revealed the presence of triterpenoid compounds, saponins, phenolic compounds and flavonoids and also mentioned antibacterial, antioxydant and anti-inflammatory activities. Despite the various therapeutic uses of the plant, no scientific research mentions the chemical content of the root. So, this phytochemical investigation is made to identify secondary metabolites present in the hydromethanolic extract of its roots. And the research led to the isolation and characterization of three lupane-type triterpenoid compounds: a novel compound derived from gouanic acid, lupeol (1) and betulin (2), which had been previously reported in the literature. The newly discovered lupane-triterpenoid was identified as 1α-hydroxy-lup-20(29)-en-3-oxo-27,28-dioic acid (3). The structures of these compounds were determined based on analyses of spectroscopic data, including 1D-NMR, 2D-NMR and HR-ESI-MS techniques.展开更多
文摘The reactivity and stability of seventeen (17) imidazo [1,2-a]pyridine N-acylhydrazone derivatives were investigated using density functional theory at the B3LYP/6-31+ G (d, p) level. Analysis of the molecular electrostatic potential (MEP) and determination of the dual descriptor revealed that in most cases, the nitrogen atoms of the 6-πelectron conjugation, the oxygen, and the sulfur atom are nucleophilic site. Chemical reactivity of the compounds was assessed through analysis of frontier molecular orbitals (HOMO and LUMO), energy gap (Δℰ), chemical hardness (η), and the softness (S). Consequently, the compound 9e exhibited the lowest reactivity, least electron donating, and the highest stability. This comprehensive study offers valuable insights into the chemical behavior of these derivatives, crucial for further exploration and potential applications.
文摘The aim of this work is to detect electrogenerated hydroxyl radicals and chlorine by simple and less expensive methods. Preparative electrolyses of perchloric acid (HClO4) and sodium chloride (NaCl) were performed on a boron-doped diamond (BDD) electrode. The hydroxyl radicals were quantified indirectly by assaying the samples from the HClO4 (0.1 M) electrolysis with a 10−4 M potassium permanganate solution. The investigations showed that the amount of hydroxyl radicals depends on the concentration of HClO4 and the current density. As for chlorine, a qualitative determination was carried out. A mixture of the electrolyte solution of HClO4 (0.1 M) + NaI (0.2 M) + 2 mL of hexane, taken in this order, leads to a purplish-pink coloration attesting to the presence of Cl2. The same test was carried out with NaBr and NaI giving pale and very pale pink colourations, respectively, showing that the intensity of the colouration depends on the strength of the oxidant present. In addition, oxidants were detected during the electrooxidation of metronidazole (MNZ). The results showed the participation of electrogenerated hydroxyl radicals. The generation of chlorine has also been proven. Furthermore, the degradation leads to a chemical oxygen demand (COD) removal rate of 83.48% and the process is diffusion-controlled.
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.
文摘Industrial effluents from textile, tannery or printing activities often have a significant pollutant load composed of dyes that are difficult to biodegrade. These dyes pose a threat to the environment. To overcome this problem, various processes have been developed to eliminate these dyes in wastewater before their release into nature. Conventional biological or physical processes most often prove to be ineffective and expensive. It is therefore necessary to resort to other processes such as advanced oxidation processes (POA). This work therefore focuses on the study of the influence of clay in the degradation of Methylene Blue by the photo-Fenton process which is one of the advanced oxidation processes (POA), with the source of irradiation, natural light. To do this, two clays from Côte d’Ivoire referenced AB and Aga were the subject of a physicochemical and mineralogical characterization. The results showed that Aga clay is composed of 75.43% quartz, 12.72% kaolinite, 8.75% illite and 3.12% goethite and AB clay consists of 61, 36% kaolinite, 28.6% quartz and 10.10% illite. Under natural light irradiation the optimal amounts of Fenton reagents (iron: 10 mg;H2O2: 0.1 mL) were determined. Finally, the addition of clay to the photo-Fenton process made it possible to improve the degradation of the pollutant (Methylene Blue). Indeed, the yield increased from 92% for the photo-Fenton process to 98.43% with the addition of AB clay and 98.13% for the addition of Aga clay. The results of the degradation kinetics clearly show that the degradation follows the pseudo-second order kinetics with correlation coefficients greater than 0.99.
文摘Gouania longipetala Hemsl. (Rhamnaceae) is a medicinal plant from Côte d’Ivoire used to treat many diseases like malaria, gastrointestinal infections and gout. Scientific research of aerial part revealed the presence of triterpenoid compounds, saponins, phenolic compounds and flavonoids and also mentioned antibacterial, antioxydant and anti-inflammatory activities. Despite the various therapeutic uses of the plant, no scientific research mentions the chemical content of the root. So, this phytochemical investigation is made to identify secondary metabolites present in the hydromethanolic extract of its roots. And the research led to the isolation and characterization of three lupane-type triterpenoid compounds: a novel compound derived from gouanic acid, lupeol (1) and betulin (2), which had been previously reported in the literature. The newly discovered lupane-triterpenoid was identified as 1α-hydroxy-lup-20(29)-en-3-oxo-27,28-dioic acid (3). The structures of these compounds were determined based on analyses of spectroscopic data, including 1D-NMR, 2D-NMR and HR-ESI-MS techniques.