The vertical structures of atmospheric temperature anomalies associated with El Nio are simulated with a spectrum atmospheric general circulation model developed by LASG/IAP (SAMIL). Sensitivity of the model’s resp...The vertical structures of atmospheric temperature anomalies associated with El Nio are simulated with a spectrum atmospheric general circulation model developed by LASG/IAP (SAMIL). Sensitivity of the model’s response to convection scheme is discussed. Two convection schemes, i.e., the revised Zhang and Macfarlane (RZM) and Tiedtke (TDK) convection schemes, are employed in two sets of AMIP-type (Atmospheric Model Intercomparison Project) SAMIL simulations, respectively. Despite some deficiencies in the upper troposphere, the canonical El Nio-related temperature anomalies characterized by a prevailing warming throughout the tropical troposphere are well reproduced in both simulations. The performance of the model in reproducing temperature anomalies in "atypical" El Nio events is sensitive to the convection scheme. When employing the RZM scheme, the warming center over the central-eastern tropical Pacific and the strong cooling in the western tropical Pacific at sea surface level are underestimated. The quadru-pole temperature anomalies in the middle and upper troposphere are also obscured. The result of employing the TDK scheme resembles the reanalysis and hence shows a better performance. The simulated largescale circulations associated with atypical El Nio events are also sensitive to the convection schemes. When employing the RZM scheme, SAMIL failed in capturing the classical Southern Oscillation pattern. In accordance with the unrealistic anomalous Walker circulation and the upper tropospheric zonal wind changes, the deficiencies of the precipitation simulation are also evident. These results demonstrate the importance of convection schemes in simulating the vertical structure of atmospheric temperature anomalies associated with El Nio and should serve as a useful reference for future improvement of SAMIL.展开更多
基金supported by the National Natural Science Foundation of China (40890054, 40821092, 90711004)R&D Spe-cial Fund for Public Welfare Industry (meteorol-ogy)(GYHY200706010)National Key Technologies R&D Program (2007BAC29B03)
文摘The vertical structures of atmospheric temperature anomalies associated with El Nio are simulated with a spectrum atmospheric general circulation model developed by LASG/IAP (SAMIL). Sensitivity of the model’s response to convection scheme is discussed. Two convection schemes, i.e., the revised Zhang and Macfarlane (RZM) and Tiedtke (TDK) convection schemes, are employed in two sets of AMIP-type (Atmospheric Model Intercomparison Project) SAMIL simulations, respectively. Despite some deficiencies in the upper troposphere, the canonical El Nio-related temperature anomalies characterized by a prevailing warming throughout the tropical troposphere are well reproduced in both simulations. The performance of the model in reproducing temperature anomalies in "atypical" El Nio events is sensitive to the convection scheme. When employing the RZM scheme, the warming center over the central-eastern tropical Pacific and the strong cooling in the western tropical Pacific at sea surface level are underestimated. The quadru-pole temperature anomalies in the middle and upper troposphere are also obscured. The result of employing the TDK scheme resembles the reanalysis and hence shows a better performance. The simulated largescale circulations associated with atypical El Nio events are also sensitive to the convection schemes. When employing the RZM scheme, SAMIL failed in capturing the classical Southern Oscillation pattern. In accordance with the unrealistic anomalous Walker circulation and the upper tropospheric zonal wind changes, the deficiencies of the precipitation simulation are also evident. These results demonstrate the importance of convection schemes in simulating the vertical structure of atmospheric temperature anomalies associated with El Nio and should serve as a useful reference for future improvement of SAMIL.