The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, ...The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort.展开更多
文摘The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort.