Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango ke...Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent.展开更多
A spectrofluorimetric method for the direct analysis of carbendazim [methyl 2-benzimidazole carbamate (MBC)] fungicide and its metabolite 2-aminobenzimidazole (2-AB) in natural waters is described. Very low limit of d...A spectrofluorimetric method for the direct analysis of carbendazim [methyl 2-benzimidazole carbamate (MBC)] fungicide and its metabolite 2-aminobenzimidazole (2-AB) in natural waters is described. Very low limit of detection (LOD) and limit of quantification (LOQ) values of 0.002 - 0.06 ng/mL and 0.006 - 0.2 ng/mL, respectively, were determined by spectrofluorimetric method with small relative standard deviation (RSD) values < 1%. This spectrofluorimetric method was applied to the determination of MBC and 2-AB residues in natural waters, with satisfactory recovery values of (88.5% - 119.2%).展开更多
文摘Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent.
基金the Service of Cooperation and Cultural Action of the Embassy of France for financial support
文摘A spectrofluorimetric method for the direct analysis of carbendazim [methyl 2-benzimidazole carbamate (MBC)] fungicide and its metabolite 2-aminobenzimidazole (2-AB) in natural waters is described. Very low limit of detection (LOD) and limit of quantification (LOQ) values of 0.002 - 0.06 ng/mL and 0.006 - 0.2 ng/mL, respectively, were determined by spectrofluorimetric method with small relative standard deviation (RSD) values < 1%. This spectrofluorimetric method was applied to the determination of MBC and 2-AB residues in natural waters, with satisfactory recovery values of (88.5% - 119.2%).