Kinetic-scale magnetic holes(KSMHs)are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius.These structures have been investigated in recent studies ...Kinetic-scale magnetic holes(KSMHs)are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius.These structures have been investigated in recent studies in near-Earth space,and found to be closely related to energy conversion and particle acceleration,wave-particle interactions,magnetic reconnection,and turbulence at the kineticscale.However,there are still several major issues of the KSMHs that need further study—including(a)the source of these structures(locally generated in near-Earth space,or carried by the solar wind),(b)the environmental conditions leading to their generation,and(c)their spatio-temporal characteristics.In this study,KSMHs in near-Earth space are investigated statistically using data from the Magnetospheric Multiscale mission.Approximately 200,000 events were observed from September 2015 to March 2020.Occurrence rates of such structures in the solar wind,magnetosheath,and magnetotail were obtained.We find that KSMHs occur in the magnetosheath at rates far above their occurrence in the solar wind.This indicates that most of the structures are generated locally in the magnetosheath,rather than advected with the solar wind.Moreover,KSMHs occur in the downstream region of the quasi-parallel shock at rates significantly higher than in the downstream region of the quasi-perpendicular shock,indicating a relationship with the turbulent plasma environment.Close to the magnetopause,we find that the depths of KSMHs decrease as their temporal-scale increases.We also find that the spatial-scales of the KSMHs near the subsolar magnetosheath are smaller than those in the flanks.Furthermore,their global distribution shows a significant dawn-dusk asymmetry(duskside dominating)in the magnetotail.展开更多
Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that thes...Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.展开更多
Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two di...Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two distinct processes: a rapid loading process that was likely driven by an internal source and a slow loading process that was likely driven by solar wind. Each of the two loading processes could also individually lead to an unloading process. The rapid internal loading process lasts for ~ 1-2 hours; the solar wind driven loading process lasts for ~ 3-18 hours and the following unloading process lasts for ~1-3 hours. In this letter, we suggest three possible loadingunloading circulations, which are fundamental in understanding the role of solar wind in driving giant planetary magnetospheric dynamics.展开更多
基金the National Natural Science Foundation of China(grants 41731068,41774153,41941001,41961130382,41431072,and 41704169)Royal Society NAF\R1\191047the PRODEX program managed by ESA in collaboration with the Belgian Federal Science Policy Office.
文摘Kinetic-scale magnetic holes(KSMHs)are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius.These structures have been investigated in recent studies in near-Earth space,and found to be closely related to energy conversion and particle acceleration,wave-particle interactions,magnetic reconnection,and turbulence at the kineticscale.However,there are still several major issues of the KSMHs that need further study—including(a)the source of these structures(locally generated in near-Earth space,or carried by the solar wind),(b)the environmental conditions leading to their generation,and(c)their spatio-temporal characteristics.In this study,KSMHs in near-Earth space are investigated statistically using data from the Magnetospheric Multiscale mission.Approximately 200,000 events were observed from September 2015 to March 2020.Occurrence rates of such structures in the solar wind,magnetosheath,and magnetotail were obtained.We find that KSMHs occur in the magnetosheath at rates far above their occurrence in the solar wind.This indicates that most of the structures are generated locally in the magnetosheath,rather than advected with the solar wind.Moreover,KSMHs occur in the downstream region of the quasi-parallel shock at rates significantly higher than in the downstream region of the quasi-perpendicular shock,indicating a relationship with the turbulent plasma environment.Close to the magnetopause,we find that the depths of KSMHs decrease as their temporal-scale increases.We also find that the spatial-scales of the KSMHs near the subsolar magnetosheath are smaller than those in the flanks.Furthermore,their global distribution shows a significant dawn-dusk asymmetry(duskside dominating)in the magnetotail.
基金Z.Y.acknowledges the National Natural Science Foundation of China(Grant No.42074211).
文摘Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.
基金supported by the National Science Foundation of China (41525016,41404117)
文摘Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two distinct processes: a rapid loading process that was likely driven by an internal source and a slow loading process that was likely driven by solar wind. Each of the two loading processes could also individually lead to an unloading process. The rapid internal loading process lasts for ~ 1-2 hours; the solar wind driven loading process lasts for ~ 3-18 hours and the following unloading process lasts for ~1-3 hours. In this letter, we suggest three possible loadingunloading circulations, which are fundamental in understanding the role of solar wind in driving giant planetary magnetospheric dynamics.