期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Statistical properties of kinetic-scale magnetic holes in terrestrial space 被引量:2
1
作者 ShuTao Yao ZongShun Yue +15 位作者 QuanQi Shi Alexander William Degeling HuiShan Fu AnMin Tian Hui Zhang Andrew Vu RuiLong Guo ZhongHua Yao Ji Liu Qiu-Gang Zong XuZhi Zhou JingHuan Li WenYa Li HongQiao Hu YangYang Liu WeiJie Sun 《Earth and Planetary Physics》 CSCD 2021年第1期63-72,共10页
Kinetic-scale magnetic holes(KSMHs)are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius.These structures have been investigated in recent studies ... Kinetic-scale magnetic holes(KSMHs)are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius.These structures have been investigated in recent studies in near-Earth space,and found to be closely related to energy conversion and particle acceleration,wave-particle interactions,magnetic reconnection,and turbulence at the kineticscale.However,there are still several major issues of the KSMHs that need further study—including(a)the source of these structures(locally generated in near-Earth space,or carried by the solar wind),(b)the environmental conditions leading to their generation,and(c)their spatio-temporal characteristics.In this study,KSMHs in near-Earth space are investigated statistically using data from the Magnetospheric Multiscale mission.Approximately 200,000 events were observed from September 2015 to March 2020.Occurrence rates of such structures in the solar wind,magnetosheath,and magnetotail were obtained.We find that KSMHs occur in the magnetosheath at rates far above their occurrence in the solar wind.This indicates that most of the structures are generated locally in the magnetosheath,rather than advected with the solar wind.Moreover,KSMHs occur in the downstream region of the quasi-parallel shock at rates significantly higher than in the downstream region of the quasi-perpendicular shock,indicating a relationship with the turbulent plasma environment.Close to the magnetopause,we find that the depths of KSMHs decrease as their temporal-scale increases.We also find that the spatial-scales of the KSMHs near the subsolar magnetosheath are smaller than those in the flanks.Furthermore,their global distribution shows a significant dawn-dusk asymmetry(duskside dominating)in the magnetotail. 展开更多
关键词 kinetic scale magnetic hole magnetic dip electron vortex turbulence
下载PDF
Recent advances in the magnetic reconnection,dipolarization,and auroral processes at giant planets from the perspective of comparative planetology
2
作者 ZhongHua Yao RuiLong Guo +5 位作者 Yong Wei Bertrand Bonfond Denis Grodent BinZheng Zhang William R.Dunn ZuYin Pu 《Earth and Planetary Physics》 EI CAS 2024年第5期659-672,共14页
Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that thes... Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations. 展开更多
关键词 magnetosphere magnetic reconnection magnetic depolarization
下载PDF
Carbonate weathering rates in the Jura Mountains, France—The influence of vegetation
3
作者 Jérome Gaillardet Damien Calmels Louis Francois 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期2-2,共1页
关键词 碳酸盐岩 风化作用 侏罗纪 植被 法国
下载PDF
Observations of loading-unloading process at Saturn's distant magnetotail
4
作者 ZhongHua Yao 《Earth and Planetary Physics》 2017年第1期53-57,共5页
Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two di... Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two distinct processes: a rapid loading process that was likely driven by an internal source and a slow loading process that was likely driven by solar wind. Each of the two loading processes could also individually lead to an unloading process. The rapid internal loading process lasts for ~ 1-2 hours; the solar wind driven loading process lasts for ~ 3-18 hours and the following unloading process lasts for ~1-3 hours. In this letter, we suggest three possible loadingunloading circulations, which are fundamental in understanding the role of solar wind in driving giant planetary magnetospheric dynamics. 展开更多
关键词 saturn magnetosphere loading-unloading process magnetic reconnection DIPOLARIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部