Friction force measurements between smooth surfaces across two layers of linear alkanes over five decades of speeds are presented. A maximum friction dissipation is observed at a characteristic speed. The behaviour is...Friction force measurements between smooth surfaces across two layers of linear alkanes over five decades of speeds are presented. A maximum friction dissipation is observed at a characteristic speed. The behaviour is described by a new approach: the formation and destruction of molecular bridges between confined alkane layers. The bridges interdigitated between the layers exhibit a thermally activated resistance to shear.An analytical model involving activation barriers accounts for the overall behaviour of the forces over four decades of speed. This first simple semi-quantitative description sheds new light on the subtle mechanisms of friction at the nanoscale level and shows how the molecular length influences the tribological properties of the liquid.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No.50305029).
文摘Friction force measurements between smooth surfaces across two layers of linear alkanes over five decades of speeds are presented. A maximum friction dissipation is observed at a characteristic speed. The behaviour is described by a new approach: the formation and destruction of molecular bridges between confined alkane layers. The bridges interdigitated between the layers exhibit a thermally activated resistance to shear.An analytical model involving activation barriers accounts for the overall behaviour of the forces over four decades of speed. This first simple semi-quantitative description sheds new light on the subtle mechanisms of friction at the nanoscale level and shows how the molecular length influences the tribological properties of the liquid.