This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can r...This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.展开更多
Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of ...Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of 12 North that is a good matching with the location of the country of Burkina Faso.Three decisive periods were locally established in order to consider the different travels of the sun on sky during one year.This work presents some technical data which facilitates the choice of sun tracking approaches with concern of a concentrator limits such as its angle of acceptance,its motion control card interpolation model,or its minimum irradiation level for energy conversion effectiveness.展开更多
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e...A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.展开更多
Knowledge of the structure and geometry of aquifers is an important prerequisite when one wishes to sit a borehole.Such knowledge is currently obtained by VES(Vertical Electrical Soundings)whose interpretation is not ...Knowledge of the structure and geometry of aquifers is an important prerequisite when one wishes to sit a borehole.Such knowledge is currently obtained by VES(Vertical Electrical Soundings)whose interpretation is not always unequivocal in the sense that several resistivity models derived from VES can explain the same data set.The present study conducted in Obuasi region in Ghana aims at demonstrating the robustness of“cumulative resistivity”method in the characterization of the geometry of aquifers.The methodology developed consisted firstly in carrying out VES.These measurements were then interpreted using“cumulative resistivity method”.Secondly,drillings are conducted at the VES sites and lithologs established from cuttings were compared to the results from VES interpretation.The study reveals that the investigated aquifer consists of a resistant layer consisting of phyllite over 30-40 m topped by a conductive layer of reddish clay 20-30 m thick.These two layers rest on a lower electrical conductivity formation downward.This description can be considered as a typical alteration profile in a volcano sedimentary context.The results also show that the method is quite precise in half of the cases studied but sometimes it is impossible to get rid of the phenomenon of suppression since several layers are merged into a single layer.展开更多
In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dri...In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dried in a single layer at different temperatures (40℃, 50℃, 60℃, and 70℃) and for a relative humidity of drying air of 20%. The results showed a reasonably good agreement between the values predicted by the correlation and the experimental observations. This model computed the Biot number, effective moisture diffusivity, and mass transfer coefficient. Effective diffusion coefficient values are obtained between 0.2578 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup> and 0.5460 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup>. Mass transfer coefficients of “Violet de Galmi” onion drying vary between 3.37 × 10<sup>-7</sup> m·s<sup>-1</sup> and 13.38 × 10<sup>-7</sup> m·s<sup>-1</sup>. Numbers of mass transfer Biot are found between 0.9797 and 2.9397. The activation energy E<sub>a</sub> is 31.73 kJ·mol<sup>-1</sup>.展开更多
This study aims to make a hydrogeological characterization of the aquifers of the Continental Terminal and the Oligo-Miocene.To do so,an analysis is conducted on the basis of hydrogeological parameters from 172 boreho...This study aims to make a hydrogeological characterization of the aquifers of the Continental Terminal and the Oligo-Miocene.To do so,an analysis is conducted on the basis of hydrogeological parameters from 172 boreholes,10 of which are used for groundwater levels and flows analysis.The results of the statistical analysis of the hydrogeological parameters show that the average flow rate is 42.29 m^(3)/h,the average specific flow rate is 5.96 m^(3)/h/m,and the average transmissivity is 0.024 m^(2)/s.These values highlight the high productivity of aquifers from the Continental Terminal and the Oligo-Miocene.The results of piezometry showed that water flows from the south center to the northwest of Tambacounda where the largest depression is located and could even be the outlet of the system.The groundwater fluctuations between low water level and high water level seasons reveal a rise in the piezometric surface of the aquifers at the scale of the study area.展开更多
The purpose of this study is to experimentally analyze the thermal behavior of the walls of a prototype experimental house. A Datalogger and thermocouples were used on the experimental house to determine the temperatu...The purpose of this study is to experimentally analyze the thermal behavior of the walls of a prototype experimental house. A Datalogger and thermocouples were used on the experimental house to determine the temperatures of the exterior and interior walls. Also, “MSR” type HygroPuce was used to determine the exterior and interior temperatures and relative humidity of the habitat. The results show that a wall made of bio-based materials with a mixture of “earth + Hibiscus cannabinus L. fibers” allows reducing the fluctuations of the interior temperatures. We observe the peaks of temperatures on the external walls at 11:00 am and for the interior walls, the peaks are observed at 5:00 pm. The maximum thermal phase shift between the peaks of the external and internal temperatures is about 7.5 hours, and the maximum damping factor is 0.9. Also, we note that the thermal performance of the material used in the design of the envelope of the house is determined by the improvement of the response of the envelope in front of the external thermal solicitations.展开更多
Air pollution is one of the major global threats to human health. In Burkina Faso, more than 80% of the population uses solid fuels as the main source of cooking energy. This paper reports a comparative study on the e...Air pollution is one of the major global threats to human health. In Burkina Faso, more than 80% of the population uses solid fuels as the main source of cooking energy. This paper reports a comparative study on the exposure of household to the carbon monoxide (CO) and particulate matter (PM<sub>2.5</sub>) emitted by improved cookstoves (ICS) or traditional cookstoves (TCS). A cross-sectional study was conducted in the city of Ouagadougou for 4 months during the rainy season (July to October) in households with an outdoor kitchen. The investigation involved 92 households where air pollutants, such as PM<sub>2.5</sub> and CO were measured with Indoor Air Pollution Meters (IAP meter). These measurements were focused on the concentration levels of the pollutants during cooking. The results of this study show high levels of PM<sub>2.5</sub> and CO for all type of stoves. Wood stoves led to higher PM<sub>2.5</sub> and lower CO emissions than charcoal stoves. ICS reduce emissions of indoor air pollutants compared to TCS. This reduction raised up to 82% for PM<sub>2.5</sub> and 37% for CO. The analysis of the data measured with the student test (t-test) shows that there is a statistically significant difference between the average values of the concentrations of the pollutants emitted with the TCS compared to ICS, except for CO emissions measured on multi-pot sizes cookstoves (MM). This study shows that the concentrations of indoor air pollutants are very high regardless of the type of cookstoves used. The CO exposure obtained varies from 119.10 to 362.72 μg/m<sup>3</sup> for 15-minute and 10.83 - 55.11 μg/m<sup>3</sup> for 1-hour exposure. The exposure in PM<sub>2.5</sub> varies from 4762 to 16,257 μg/m<sup>3</sup> for 15-minute and 106.63 to 1597 μg/m<sup>3</sup> for 1-hour of exposure. It was noted that the CO exposure levels obtained over 15-minute of exposure are 1.36 to 4.15 times higher than the WHO recommendation and 1.8 times higher for an exposure time of one hour. This means that women in charge of cooking have a high risk of exposure to air pollutants.展开更多
This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years afte...This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years after the first study. Special attention has been paid to waste sampled and also to estimate energy content, namely the higher heating value (HHV) and the lower heating value (LHV). As a general tendency, the results showed a sensitive evolution in the physical parameters of waste (composition by size and composition by category) and also in the physicochemical parameters (moisture content and energy content). The results of HSW composition study showed that regardless the seasons, fermentable fraction is dominant (39% in the rainy season and 20% in the dry season) followed by plastics (18% in the rainy season and 20% in the dry season). The moisture content is measured to be 56.69% and 37.69% respectively in the rainy season and dry season. The results analysis of the potential of recovery showed that the organic recovery is more important (60% in the rainy season and 55% in the dry season) than the matter recovery (43% in the rainy season and 46% in the dry season). These results highlight the need for organic recovery and matter recovery of HSW in the city of Ouagadougou. The results from the analysis of the energy content showed that the HHV is estimated to be 17.94 MJ/kg in the rainy season and 17.96 MJ/kg in the dry season. The LHV is calculated to be 6.38 MJ/kg in the rainy season and 10.27 MJ/kg in the dry season. These results suggest that incineration as treatment of HSW in the city of Ouagadougou is not economically an appropriate option.展开更多
The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the prop...The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.展开更多
In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin lay...In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin layer drying. The drying kinetics and the temperature curves of the product were simulated using the model at various drying temperatures. The simulated curves were then compared to the experimental curves obtained using a convective dryer controlled in temperature and moisture. The results showed that the drying curves were suitably fitted by the thin layer drying model with a correlation coefficient r<sup>2</sup> = 0.997. Thus, taking shrinkage into account, it is possible to predict more effectively the thin layer drying kinetics of mango slices. This study therefore contributed to the mango drying modelling and to the mango dryer setting.展开更多
The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms fr...The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kg w /kg dm to 3.12 kg w /kg dm were characterized. A novel procedure has been developed to determine the water content profiles inside samples during isothermal drying. At both temperatures, experimental results underlined that the physical properties of Spirulina are not sensitive to the geographical origin, Burkina-Faso or France. To keep Spirulina at an water activity below 0.6 in order to preserve it from micro-organisms development, sorption isotherm curves show that a sufficient requirement is to lower the water content until an upper limit of w = 0.075 db. The evolution of water transport coefficient as a function of water content highlights a monotonous exponential dependence with a transport coefficient ranging from 1.70 × 10–10 to 94 × 10–10 m2/s. The contribution of solid phase shrinkage to the transport of water is negligible for the last drying steps.展开更多
Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters...Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters in the solid matrix and in time during the drying of Spirulina platensis has not known an advanced understanding. The objective of this study was to evaluate the evolution of the water content profile, the mass flow, the concentration gradient and the diffusion coefficient during the drying of Spirulina platensis taking into account the shrinkage. Modeling and experimental analysis (at 50°C and HR = 6%) by the cutting method a cylinder 20 mm in diameter and 40 mm thick were carried. The water content profiles of two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kgw/kgdb and 3.12 kgw/kgdb were determined. These profiles have been adjusted by a polynomial function. Identical water behavior is observed regardless of the origin of the samples. Water distribution is heterogeneous. Mass flow and concentration gradient are greater at the edge than inside the product. The water transport coefficient, ranging from 1.70 × 10?10 to 94 × 10?10 m2/s, is determined from a linear approach.展开更多
The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles ...The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles imports are contributing to the deterioration of this air quality. In this work, we present the modelling of desert aerosols using a CTM Polair3D-SIREAM. The objective is to evaluate the ability of Polair3D-SIREAM to reproduce observations of PM10 and Aerosol Optical Thicknesses (AOT). A simulation with Polair3D-SIREAM was carried out in West Africa, focused on Ouagadougou (Burkina Faso) for 2007. The model of Marticorena and Bergametti (1995), MB95, was used to estimate desert aerosols emissions. The total emission of dust modelled is 52.2 Tg. For the evaluation of PM10, the simulated averages remained within the same orders of magnitude as the observed averages. Correlations are low in all the observation sites. The other indicators are similar to those found by Schmechtig et al. (2011). Performance criteria of Boylan and Russel (2006) are met for the observation sites of Ouagadougou and Ilorin (Nigeria). For the AOTs, the correlations are significantly improved, in particular, at the sites of Ouagadougou and Ilorin. Performance criteria of Boylan are met for all observation sites. However, the performance goals are only achieved for Ouagadougou and Ilorin.展开更多
The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temp...The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temperature in batch reactor and the obtained adsorption isotherms were well fitted by Fowler-Guggenheim model. It was pointed out for all samples that α-endosulfan was physisorbed in the interlayer space of the clay samples. The maximal adsorption capacities were respectively about 9.12, 6.98 and 4.13 mg/g for KO2, KO1 and KW1 samples. The differences in terms of adsorption capacity for the three samples were due to the presence of illite in the samples KO2 and KO1 when the KW1 sample contained essentially kaolinite in its structure. When the interlayer space was large enough as for samples with illite a greater amount of α-endosulfan molecules were adsorbed. It was also shown that the samples with the higher surface area were the most efficient for the removal of α-endosulfan molecules from water. Moreover, this study exhibited that the α-endosulfan adsorption depended on the crystallites size;the samples presenting largest crystallites had the greatest adsorption capacities.展开更多
In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders incl...In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders including cardio-respiratory pathologies, acute bronchopneumonia, lung cancer, etc. In sub-Saharan Africa countries, particularly Burkina Faso, there is very few similar research. In the present work, the pollution levels of airborne particle in the city of Ouagadougou have been assessed through two campaigns of in situ measurements of suspended particulate matter concentrations. These measurements which have concerned PM<sub>1</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were performed using a portable device (AEROCET531S) at nine sites in 2018 and at ten sites in 2019. These sites are located on roadside, administrative services, secondary education establishments and outlying districts. The results show that: 1) the PM1 concentrations values presented no significant variation between days, seasons or sampling sites;2) the 24-hour PM<sub>2.5</sub> concentrations often exceeding WHO recommended concentrations and, 3) the 24-hour PM<sub>10</sub> concentrations exceed WHO recommended concentrations regardless of the season or the sampling site. In indeed, the average 24-hour concentrations are 20 ± 4, 87 ± 16 and 951 ± 266 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup> for the PM1, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. They are 17 ± 3, 29 ± 5 and 158 ± 43 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2018 dry season and, 12 ± 1, 22 ± 9 and 187 ± 67 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2019 rainy season.展开更多
Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun....Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.展开更多
This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using...This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.展开更多
文摘This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.
文摘Modelization equations of six approaches for tracking the sun are recalled and used to evaluate the constraints and performances to which they lead to.The geographical study case is taken for the specific latitude of 12 North that is a good matching with the location of the country of Burkina Faso.Three decisive periods were locally established in order to consider the different travels of the sun on sky during one year.This work presents some technical data which facilitates the choice of sun tracking approaches with concern of a concentrator limits such as its angle of acceptance,its motion control card interpolation model,or its minimum irradiation level for energy conversion effectiveness.
文摘A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.
文摘Knowledge of the structure and geometry of aquifers is an important prerequisite when one wishes to sit a borehole.Such knowledge is currently obtained by VES(Vertical Electrical Soundings)whose interpretation is not always unequivocal in the sense that several resistivity models derived from VES can explain the same data set.The present study conducted in Obuasi region in Ghana aims at demonstrating the robustness of“cumulative resistivity”method in the characterization of the geometry of aquifers.The methodology developed consisted firstly in carrying out VES.These measurements were then interpreted using“cumulative resistivity method”.Secondly,drillings are conducted at the VES sites and lithologs established from cuttings were compared to the results from VES interpretation.The study reveals that the investigated aquifer consists of a resistant layer consisting of phyllite over 30-40 m topped by a conductive layer of reddish clay 20-30 m thick.These two layers rest on a lower electrical conductivity formation downward.This description can be considered as a typical alteration profile in a volcano sedimentary context.The results also show that the method is quite precise in half of the cases studied but sometimes it is impossible to get rid of the phenomenon of suppression since several layers are merged into a single layer.
文摘In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dried in a single layer at different temperatures (40℃, 50℃, 60℃, and 70℃) and for a relative humidity of drying air of 20%. The results showed a reasonably good agreement between the values predicted by the correlation and the experimental observations. This model computed the Biot number, effective moisture diffusivity, and mass transfer coefficient. Effective diffusion coefficient values are obtained between 0.2578 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup> and 0.5460 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup>. Mass transfer coefficients of “Violet de Galmi” onion drying vary between 3.37 × 10<sup>-7</sup> m·s<sup>-1</sup> and 13.38 × 10<sup>-7</sup> m·s<sup>-1</sup>. Numbers of mass transfer Biot are found between 0.9797 and 2.9397. The activation energy E<sub>a</sub> is 31.73 kJ·mol<sup>-1</sup>.
文摘This study aims to make a hydrogeological characterization of the aquifers of the Continental Terminal and the Oligo-Miocene.To do so,an analysis is conducted on the basis of hydrogeological parameters from 172 boreholes,10 of which are used for groundwater levels and flows analysis.The results of the statistical analysis of the hydrogeological parameters show that the average flow rate is 42.29 m^(3)/h,the average specific flow rate is 5.96 m^(3)/h/m,and the average transmissivity is 0.024 m^(2)/s.These values highlight the high productivity of aquifers from the Continental Terminal and the Oligo-Miocene.The results of piezometry showed that water flows from the south center to the northwest of Tambacounda where the largest depression is located and could even be the outlet of the system.The groundwater fluctuations between low water level and high water level seasons reveal a rise in the piezometric surface of the aquifers at the scale of the study area.
文摘The purpose of this study is to experimentally analyze the thermal behavior of the walls of a prototype experimental house. A Datalogger and thermocouples were used on the experimental house to determine the temperatures of the exterior and interior walls. Also, “MSR” type HygroPuce was used to determine the exterior and interior temperatures and relative humidity of the habitat. The results show that a wall made of bio-based materials with a mixture of “earth + Hibiscus cannabinus L. fibers” allows reducing the fluctuations of the interior temperatures. We observe the peaks of temperatures on the external walls at 11:00 am and for the interior walls, the peaks are observed at 5:00 pm. The maximum thermal phase shift between the peaks of the external and internal temperatures is about 7.5 hours, and the maximum damping factor is 0.9. Also, we note that the thermal performance of the material used in the design of the envelope of the house is determined by the improvement of the response of the envelope in front of the external thermal solicitations.
文摘Air pollution is one of the major global threats to human health. In Burkina Faso, more than 80% of the population uses solid fuels as the main source of cooking energy. This paper reports a comparative study on the exposure of household to the carbon monoxide (CO) and particulate matter (PM<sub>2.5</sub>) emitted by improved cookstoves (ICS) or traditional cookstoves (TCS). A cross-sectional study was conducted in the city of Ouagadougou for 4 months during the rainy season (July to October) in households with an outdoor kitchen. The investigation involved 92 households where air pollutants, such as PM<sub>2.5</sub> and CO were measured with Indoor Air Pollution Meters (IAP meter). These measurements were focused on the concentration levels of the pollutants during cooking. The results of this study show high levels of PM<sub>2.5</sub> and CO for all type of stoves. Wood stoves led to higher PM<sub>2.5</sub> and lower CO emissions than charcoal stoves. ICS reduce emissions of indoor air pollutants compared to TCS. This reduction raised up to 82% for PM<sub>2.5</sub> and 37% for CO. The analysis of the data measured with the student test (t-test) shows that there is a statistically significant difference between the average values of the concentrations of the pollutants emitted with the TCS compared to ICS, except for CO emissions measured on multi-pot sizes cookstoves (MM). This study shows that the concentrations of indoor air pollutants are very high regardless of the type of cookstoves used. The CO exposure obtained varies from 119.10 to 362.72 μg/m<sup>3</sup> for 15-minute and 10.83 - 55.11 μg/m<sup>3</sup> for 1-hour exposure. The exposure in PM<sub>2.5</sub> varies from 4762 to 16,257 μg/m<sup>3</sup> for 15-minute and 106.63 to 1597 μg/m<sup>3</sup> for 1-hour of exposure. It was noted that the CO exposure levels obtained over 15-minute of exposure are 1.36 to 4.15 times higher than the WHO recommendation and 1.8 times higher for an exposure time of one hour. This means that women in charge of cooking have a high risk of exposure to air pollutants.
文摘This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years after the first study. Special attention has been paid to waste sampled and also to estimate energy content, namely the higher heating value (HHV) and the lower heating value (LHV). As a general tendency, the results showed a sensitive evolution in the physical parameters of waste (composition by size and composition by category) and also in the physicochemical parameters (moisture content and energy content). The results of HSW composition study showed that regardless the seasons, fermentable fraction is dominant (39% in the rainy season and 20% in the dry season) followed by plastics (18% in the rainy season and 20% in the dry season). The moisture content is measured to be 56.69% and 37.69% respectively in the rainy season and dry season. The results analysis of the potential of recovery showed that the organic recovery is more important (60% in the rainy season and 55% in the dry season) than the matter recovery (43% in the rainy season and 46% in the dry season). These results highlight the need for organic recovery and matter recovery of HSW in the city of Ouagadougou. The results from the analysis of the energy content showed that the HHV is estimated to be 17.94 MJ/kg in the rainy season and 17.96 MJ/kg in the dry season. The LHV is calculated to be 6.38 MJ/kg in the rainy season and 10.27 MJ/kg in the dry season. These results suggest that incineration as treatment of HSW in the city of Ouagadougou is not economically an appropriate option.
文摘The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.
文摘In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin layer drying. The drying kinetics and the temperature curves of the product were simulated using the model at various drying temperatures. The simulated curves were then compared to the experimental curves obtained using a convective dryer controlled in temperature and moisture. The results showed that the drying curves were suitably fitted by the thin layer drying model with a correlation coefficient r<sup>2</sup> = 0.997. Thus, taking shrinkage into account, it is possible to predict more effectively the thin layer drying kinetics of mango slices. This study therefore contributed to the mango drying modelling and to the mango dryer setting.
文摘The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kg w /kg dm to 3.12 kg w /kg dm were characterized. A novel procedure has been developed to determine the water content profiles inside samples during isothermal drying. At both temperatures, experimental results underlined that the physical properties of Spirulina are not sensitive to the geographical origin, Burkina-Faso or France. To keep Spirulina at an water activity below 0.6 in order to preserve it from micro-organisms development, sorption isotherm curves show that a sufficient requirement is to lower the water content until an upper limit of w = 0.075 db. The evolution of water transport coefficient as a function of water content highlights a monotonous exponential dependence with a transport coefficient ranging from 1.70 × 10–10 to 94 × 10–10 m2/s. The contribution of solid phase shrinkage to the transport of water is negligible for the last drying steps.
文摘Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters in the solid matrix and in time during the drying of Spirulina platensis has not known an advanced understanding. The objective of this study was to evaluate the evolution of the water content profile, the mass flow, the concentration gradient and the diffusion coefficient during the drying of Spirulina platensis taking into account the shrinkage. Modeling and experimental analysis (at 50°C and HR = 6%) by the cutting method a cylinder 20 mm in diameter and 40 mm thick were carried. The water content profiles of two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kgw/kgdb and 3.12 kgw/kgdb were determined. These profiles have been adjusted by a polynomial function. Identical water behavior is observed regardless of the origin of the samples. Water distribution is heterogeneous. Mass flow and concentration gradient are greater at the edge than inside the product. The water transport coefficient, ranging from 1.70 × 10?10 to 94 × 10?10 m2/s, is determined from a linear approach.
文摘The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles imports are contributing to the deterioration of this air quality. In this work, we present the modelling of desert aerosols using a CTM Polair3D-SIREAM. The objective is to evaluate the ability of Polair3D-SIREAM to reproduce observations of PM10 and Aerosol Optical Thicknesses (AOT). A simulation with Polair3D-SIREAM was carried out in West Africa, focused on Ouagadougou (Burkina Faso) for 2007. The model of Marticorena and Bergametti (1995), MB95, was used to estimate desert aerosols emissions. The total emission of dust modelled is 52.2 Tg. For the evaluation of PM10, the simulated averages remained within the same orders of magnitude as the observed averages. Correlations are low in all the observation sites. The other indicators are similar to those found by Schmechtig et al. (2011). Performance criteria of Boylan and Russel (2006) are met for the observation sites of Ouagadougou and Ilorin (Nigeria). For the AOTs, the correlations are significantly improved, in particular, at the sites of Ouagadougou and Ilorin. Performance criteria of Boylan are met for all observation sites. However, the performance goals are only achieved for Ouagadougou and Ilorin.
文摘The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temperature in batch reactor and the obtained adsorption isotherms were well fitted by Fowler-Guggenheim model. It was pointed out for all samples that α-endosulfan was physisorbed in the interlayer space of the clay samples. The maximal adsorption capacities were respectively about 9.12, 6.98 and 4.13 mg/g for KO2, KO1 and KW1 samples. The differences in terms of adsorption capacity for the three samples were due to the presence of illite in the samples KO2 and KO1 when the KW1 sample contained essentially kaolinite in its structure. When the interlayer space was large enough as for samples with illite a greater amount of α-endosulfan molecules were adsorbed. It was also shown that the samples with the higher surface area were the most efficient for the removal of α-endosulfan molecules from water. Moreover, this study exhibited that the α-endosulfan adsorption depended on the crystallites size;the samples presenting largest crystallites had the greatest adsorption capacities.
文摘In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders including cardio-respiratory pathologies, acute bronchopneumonia, lung cancer, etc. In sub-Saharan Africa countries, particularly Burkina Faso, there is very few similar research. In the present work, the pollution levels of airborne particle in the city of Ouagadougou have been assessed through two campaigns of in situ measurements of suspended particulate matter concentrations. These measurements which have concerned PM<sub>1</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were performed using a portable device (AEROCET531S) at nine sites in 2018 and at ten sites in 2019. These sites are located on roadside, administrative services, secondary education establishments and outlying districts. The results show that: 1) the PM1 concentrations values presented no significant variation between days, seasons or sampling sites;2) the 24-hour PM<sub>2.5</sub> concentrations often exceeding WHO recommended concentrations and, 3) the 24-hour PM<sub>10</sub> concentrations exceed WHO recommended concentrations regardless of the season or the sampling site. In indeed, the average 24-hour concentrations are 20 ± 4, 87 ± 16 and 951 ± 266 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup> for the PM1, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. They are 17 ± 3, 29 ± 5 and 158 ± 43 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2018 dry season and, 12 ± 1, 22 ± 9 and 187 ± 67 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2019 rainy season.
文摘Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.
文摘This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.