The tidal flat of Nakta is located in the northern part of the gulf of Gabes and in the southern coast of Sfax. It corresponds to a flat reef protected from less topography, with a slope ranging between 2° and 4&...The tidal flat of Nakta is located in the northern part of the gulf of Gabes and in the southern coast of Sfax. It corresponds to a flat reef protected from less topography, with a slope ranging between 2° and 4°, which borders the Gargour Wadi. The study sector is renowned to have moderate hydrodynamics which lasts almost for two millenary (14C isotopic dating). The sedimentological study of the Nakta tidal flat revealed different facies: fine-grained sand in the intertidal zone and carbonated muddy sand in the infratidal zone. Equilibrium state of the Nakta ecosystem depends entirely on tide currents, which mainly inhibit drift currents. The Nakta tidal flat is characterized by a variety of faunal species (Cerastoderma glaucum, Arca noe, Cardita antiquatus, Chlamys varied, Ruditapes deccussatus, Tapes rhomboids, Pinctada radiate, etc.) and floristic diversities (Halocnemum strobilacum, Halimione portulacoides, Enteromorpha linza, Ulva rigida, Cymodocea nodosa, Posidonia oceanica). The species are abundant in the infratidal zone, while in its intertidal zone, faunal species remain little diversified and are dominated by limivorous diggering. The paleogeographic study of the Nakta tidal flat showed the alternation of regression and transgression periods.展开更多
The use of treated wastewater (TW) for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient content of soils. Indeed, TW usually contain large amount...The use of treated wastewater (TW) for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient content of soils. Indeed, TW usually contain large amounts of nutrient elements. The objective of this study is to evaluate the impact of long-term irrigation by TW on soil fertility under real field conditions. In the vicinity of the city of Sfax, a semi-arid region, a calcisol field has been irrigated for more 15 years with organic sodic TW;soil was modeled at three different depths (0 - 30, 30 - 60 and 60 - 90 cm) and along soil pits in the TW irrigated zone and in a nearby non-irrigated zone (control). Several parameters have been measured: soils pH, CEC, exchangeable cations, nitrate and ammonia, total contents of nitrogen, phosphorus and other essential macro and micro nutrients, electrical conductivity, soil organic carbon and dissolved organic carbon. C/N ratio and SUVA were calculated for each soil layer. The calculation of the isovolumic mass balance on soil profile scale was used to measure macro and micro nutrients supply. The TW irrigation has led to important supply in organic carbon (+100%), phosphorus (+80%) and in most essential nutrients (N, Mn, Zn). Due to the high rate of irrigation and low CEC of the studied soil, the added nutrient cations and nitrate are removed with leaching waters compared to the non-irrigated control soil. Moreover, Sfax’s TW bring about important amounts of salts and Na. Therefore the beneficial addition of nutrients could quickly be inhibited by the excessive supply of salts and available nitrogen. Apart from future crops production risk, groundwater degradation quality and soil fertility will be endangered over the long term.展开更多
文摘The tidal flat of Nakta is located in the northern part of the gulf of Gabes and in the southern coast of Sfax. It corresponds to a flat reef protected from less topography, with a slope ranging between 2° and 4°, which borders the Gargour Wadi. The study sector is renowned to have moderate hydrodynamics which lasts almost for two millenary (14C isotopic dating). The sedimentological study of the Nakta tidal flat revealed different facies: fine-grained sand in the intertidal zone and carbonated muddy sand in the infratidal zone. Equilibrium state of the Nakta ecosystem depends entirely on tide currents, which mainly inhibit drift currents. The Nakta tidal flat is characterized by a variety of faunal species (Cerastoderma glaucum, Arca noe, Cardita antiquatus, Chlamys varied, Ruditapes deccussatus, Tapes rhomboids, Pinctada radiate, etc.) and floristic diversities (Halocnemum strobilacum, Halimione portulacoides, Enteromorpha linza, Ulva rigida, Cymodocea nodosa, Posidonia oceanica). The species are abundant in the infratidal zone, while in its intertidal zone, faunal species remain little diversified and are dominated by limivorous diggering. The paleogeographic study of the Nakta tidal flat showed the alternation of regression and transgression periods.
文摘The use of treated wastewater (TW) for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient content of soils. Indeed, TW usually contain large amounts of nutrient elements. The objective of this study is to evaluate the impact of long-term irrigation by TW on soil fertility under real field conditions. In the vicinity of the city of Sfax, a semi-arid region, a calcisol field has been irrigated for more 15 years with organic sodic TW;soil was modeled at three different depths (0 - 30, 30 - 60 and 60 - 90 cm) and along soil pits in the TW irrigated zone and in a nearby non-irrigated zone (control). Several parameters have been measured: soils pH, CEC, exchangeable cations, nitrate and ammonia, total contents of nitrogen, phosphorus and other essential macro and micro nutrients, electrical conductivity, soil organic carbon and dissolved organic carbon. C/N ratio and SUVA were calculated for each soil layer. The calculation of the isovolumic mass balance on soil profile scale was used to measure macro and micro nutrients supply. The TW irrigation has led to important supply in organic carbon (+100%), phosphorus (+80%) and in most essential nutrients (N, Mn, Zn). Due to the high rate of irrigation and low CEC of the studied soil, the added nutrient cations and nitrate are removed with leaching waters compared to the non-irrigated control soil. Moreover, Sfax’s TW bring about important amounts of salts and Na. Therefore the beneficial addition of nutrients could quickly be inhibited by the excessive supply of salts and available nitrogen. Apart from future crops production risk, groundwater degradation quality and soil fertility will be endangered over the long term.