The present study is concerned with the vibration analysis of symmetric composite beams with a variable fiber volume fraction through thickness. First-order shear deformation and rotary inertia have been included in t...The present study is concerned with the vibration analysis of symmetric composite beams with a variable fiber volume fraction through thickness. First-order shear deformation and rotary inertia have been included in the analysis. The solution procedure is applicable to arbitrary boundary conditions. Continuous gradation of the fiber volume fraction is modeled in the form of an m-th power polynomial of the coordinate axis in the thickness direction of the beam. By varying the fiber volume fraction within the symmetric composite beam to create a functionally graded material (FGM), certain vibration characteristics are affected. Results are presented to demonstrate the effects of shear deformation, fiber volume fraction, and boundary conditions on the natural frequencies and mode shapes of composite beams.展开更多
This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown fu...This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. The validity of the theory is shown by comparing the present results with those of the classical, the first-order, and the other higher-order theories. The proposed theory is accurate and simple in solving the free vibration behavior of the FGM sandwich plates.展开更多
In this paper, the effect of time-dependent deformations (such as shrinkage and creep) on the interracial stresses between an RC beam and FRP plate is presented. For this end, a closed-form solution for such stresse...In this paper, the effect of time-dependent deformations (such as shrinkage and creep) on the interracial stresses between an RC beam and FRP plate is presented. For this end, a closed-form solution for such stresses in externally FRP plated RC beams including creep and shrinkage effects is presented. The developed model is formulated to predict the interfacial stresses at time 't', in which the RC beams have been already subjected to creep and shrinkage effects. The adherend shear deformations have been included in the present theoretical analysis by assuming a parabolic shear stress through the thickness of the RC beam and the FRP panel. Contrary to some existing studies, the assumption that both RC beam and FRP panel have the same curvature is not used in the present investigation. This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.展开更多
In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate. Unlike any other theory, the number of unknown functions involve...In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Two common types of functionally graded sandwich plates, namely, the sandwich with fimctionally graded facesheet and homogeneous core and the sandwich with homogeneous facesheet and functionally graded core, are considered. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinu- soidal loading has been obtained by using the Navier method. The validity of the present theory is investigated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded sandwich plates.展开更多
文摘The present study is concerned with the vibration analysis of symmetric composite beams with a variable fiber volume fraction through thickness. First-order shear deformation and rotary inertia have been included in the analysis. The solution procedure is applicable to arbitrary boundary conditions. Continuous gradation of the fiber volume fraction is modeled in the form of an m-th power polynomial of the coordinate axis in the thickness direction of the beam. By varying the fiber volume fraction within the symmetric composite beam to create a functionally graded material (FGM), certain vibration characteristics are affected. Results are presented to demonstrate the effects of shear deformation, fiber volume fraction, and boundary conditions on the natural frequencies and mode shapes of composite beams.
文摘This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. The validity of the theory is shown by comparing the present results with those of the classical, the first-order, and the other higher-order theories. The proposed theory is accurate and simple in solving the free vibration behavior of the FGM sandwich plates.
文摘In this paper, the effect of time-dependent deformations (such as shrinkage and creep) on the interracial stresses between an RC beam and FRP plate is presented. For this end, a closed-form solution for such stresses in externally FRP plated RC beams including creep and shrinkage effects is presented. The developed model is formulated to predict the interfacial stresses at time 't', in which the RC beams have been already subjected to creep and shrinkage effects. The adherend shear deformations have been included in the present theoretical analysis by assuming a parabolic shear stress through the thickness of the RC beam and the FRP panel. Contrary to some existing studies, the assumption that both RC beam and FRP panel have the same curvature is not used in the present investigation. This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.
文摘In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Two common types of functionally graded sandwich plates, namely, the sandwich with fimctionally graded facesheet and homogeneous core and the sandwich with homogeneous facesheet and functionally graded core, are considered. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinu- soidal loading has been obtained by using the Navier method. The validity of the present theory is investigated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded sandwich plates.