We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Ital...We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Italian Stone Pine(Pinus pinea L.), Lentisk(Pistacia lentiscus L.),and a combination of Italian Stone Pine and Lentisk(organic mulches), gravel(inorganic mulch) and control), and three tree shelter types(non-vented and vented tree shelters, and control) were tested. An increase in the number of internodes occurred under the gravel mulch, while a reduction in survival was found for the lentisk mulch. Tree shelters had no effect on survival, but increased mean height growth and reduced mean diameter growth during the 4 years(excepting a non-significant effect for vented tree shelter at year four). Comparison of the annual shoots and growth units(GU) between sheltered and unsheltered plants according to year of formation revealed two growth phases. In first phase, shoots were totally or partially inside the shelters; mean length of annual shoots and GU were greater for sheltered plants. The second phase was characterized by shoots emerging from shelters; mean length of annual shoots and GU were similar for all plants, with or without tree shelters. Results suggest that the use of tree shelters, particularly vented shelters, could contribute to the improvement of the artificial regeneration of zeen oak.The use of mulching alone or in combination with tree shelters did not improve zeen oak performance in the field.展开更多
Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are ...Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are related to an ellipsoid and therefore must be corrected. Some of these methods are accurate but quite heavy as developed by [1], but one of them is easy to use while giving very good results in a local system: some mm for a 10 × 10 km2 area developed by [2] [3]. In our study, we have used software called “Géoide Program”, previously used at the CERN in Switzerland and set up by [4], which they complete this software allowing a parameterization of general data to provide results in a general system. Then, tests have shown the way to optimize computations without any loss of accuracy. For our computations we use gridded of geodetic heights, from Lambert or WGS 84 datum’s, DTM (Digital Terrain Model) and leveled GPS points. To obtain these results, components of the vertical deflection are computed for every point on the grid, deduced from the attraction exerted by the mass Model. Then, geodetic heights are computed by an incremental way from an arbitrary reference. Once the calculation is performed, the geodetic height of any point located in the modelled area can be interpolated. The variations of parameters (mainly size and increments of the DTM and of the modeled area, and ground density) have shown that they do not play a significant role although DTM must be large enough to take into account an important area around a selected zone. However, the choice of the levelled GPS points is primordial. We have performed tests with real data concerning Mejez El Bab zone, in north of Tunisia. Nevertheless, for a few hundreds of square kilometers area, and just by using a DTM and a few levelled GPS points, this method provides results that look extremely promising, at least for surveying activities, as it shows a good possibility to use GPS for coarse precision levelling, and as DTM are now widely available in many countries.展开更多
基金supported by the laboratory of silvopastoral resources(Silvopastoral Institute-Tabarka)
文摘We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Italian Stone Pine(Pinus pinea L.), Lentisk(Pistacia lentiscus L.),and a combination of Italian Stone Pine and Lentisk(organic mulches), gravel(inorganic mulch) and control), and three tree shelter types(non-vented and vented tree shelters, and control) were tested. An increase in the number of internodes occurred under the gravel mulch, while a reduction in survival was found for the lentisk mulch. Tree shelters had no effect on survival, but increased mean height growth and reduced mean diameter growth during the 4 years(excepting a non-significant effect for vented tree shelter at year four). Comparison of the annual shoots and growth units(GU) between sheltered and unsheltered plants according to year of formation revealed two growth phases. In first phase, shoots were totally or partially inside the shelters; mean length of annual shoots and GU were greater for sheltered plants. The second phase was characterized by shoots emerging from shelters; mean length of annual shoots and GU were similar for all plants, with or without tree shelters. Results suggest that the use of tree shelters, particularly vented shelters, could contribute to the improvement of the artificial regeneration of zeen oak.The use of mulching alone or in combination with tree shelters did not improve zeen oak performance in the field.
文摘Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are related to an ellipsoid and therefore must be corrected. Some of these methods are accurate but quite heavy as developed by [1], but one of them is easy to use while giving very good results in a local system: some mm for a 10 × 10 km2 area developed by [2] [3]. In our study, we have used software called “Géoide Program”, previously used at the CERN in Switzerland and set up by [4], which they complete this software allowing a parameterization of general data to provide results in a general system. Then, tests have shown the way to optimize computations without any loss of accuracy. For our computations we use gridded of geodetic heights, from Lambert or WGS 84 datum’s, DTM (Digital Terrain Model) and leveled GPS points. To obtain these results, components of the vertical deflection are computed for every point on the grid, deduced from the attraction exerted by the mass Model. Then, geodetic heights are computed by an incremental way from an arbitrary reference. Once the calculation is performed, the geodetic height of any point located in the modelled area can be interpolated. The variations of parameters (mainly size and increments of the DTM and of the modeled area, and ground density) have shown that they do not play a significant role although DTM must be large enough to take into account an important area around a selected zone. However, the choice of the levelled GPS points is primordial. We have performed tests with real data concerning Mejez El Bab zone, in north of Tunisia. Nevertheless, for a few hundreds of square kilometers area, and just by using a DTM and a few levelled GPS points, this method provides results that look extremely promising, at least for surveying activities, as it shows a good possibility to use GPS for coarse precision levelling, and as DTM are now widely available in many countries.