The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi an...The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi and Walia, and two control sites (Gassi and Walia). A total of fifty (50) soil samples were taken (24 from the Gassi site, 24 from the Walia site and 2 as control soils) and then analyzed to determine a number of physico-chemical parameters (pH, OM and electrical conductivity) and heavy metal concentrations in the various soils. The TME content (As, Cd, Cu, Cr, Ni, Pb, Hg and Zn) of the soils was determined by plasma-coupled Atomic Emission Spectrometry. In order to assess the level of contamination in Gassi and Walia soils, the geoaccumulation index (GeoIndex), contamination factor and degree of contamination were calculated. Results for physico-chemical parameters revealed that pH ranged from acidic (4.6) to moderately neutral (6.5), electrical conductivity was higher in cultivated soils (mean 292.14 μs/cm) than in control soils (mean 149.33 μs/cm), and soils were rich in organic matter. Overall, heavy metal concentrations in cultivated soils were higher than in control soils. The pollution estimate shows that soils in the area have no moderate contamination. The increase in TME concentrations in cultivated soils is thought to be due to the input of agricultural inputs to the soil. However, these levels are below the Average shale reference and Canadian guidelines for agricultural soil quality. Principal component analysis shows that metals are positively and significantly correlated with each other, and negatively and moderately significantly correlated with each other.展开更多
Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the prese...Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the present study, laboratory batch experiment of metal solubilization, cress seeds germination were undertaken to investigate the metal-mobilizing capability and the phytotoxicity of organic additives, including ethylene diamine triacetic acid (EDTA), citric acid, acetic acid, oxalic acid, glutamine and monosodium glutamate waste liquid (MGWL) from food industry. Experiments in pots were carried out to study the effects of the additives on Zn and Cd phytoextraction. Furthermore, a leaching experiment with lysimeter was performed to evaluate the environmental risks of additive-induced leaching to underground water. The results showed that EDTA had a strong mobilizing ability for Zn and Cd, followed by mixed reagent (MR) and MGWL. MGWL and acetic acid at 5 mmol equivalent per liter resulted in seed germination index less than 2%. Experiments in pots verified the phytotoxicity of acetic acid and MGWL. Addition of the mixed reagent at 6--10 mmol/kg significantly increased Zn phytoextraction by Thlaspi caerulescens. The same for EDTA and the mixed reagent at 10 mmol/kg by Sedum dfredii. But only mixed reagents could significantly increase Cd phytoextraction by the studied hyperaccumulators. This suggested that the strong chelant was not always the good agent to enhance phytoextraction. S. alfredii combined with 2--10 mmol/kg soil MR was preferred for phytoremediation of Cd/Zn contaminated soils in southern China, this could result in high phytoextraction of Cd/Zn and reduce the leaching risk to underground water than EDTA assisted phytoextration.展开更多
Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set ...Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set theory was applied to evaluate the uncertainties of three risk indicators,namely,plant growth,groundwater safety and human health,of a restored site that had been previously polluted by heavy metals. The concept model classified the grade and importance of risk factors by an 11-level ranking system and was able to yield a comprehensive risk result rather than multi-risk results for complex risk indicators. Modeling results showed that the risks to the three indicators were effectively reduced after the remediation. Moreover,great sensitivity of the risks was found related to the weight distribution among the three risk indicators. In general,the risks of both polluted and restored soils to the environment were in the order of groundwater safety > plant growth > human health. The model was proved to solve the problems of multi-risk results due to complex risk indicators that previously encountered by other researchers,which made it helpful in decision-making and management of restored soils.展开更多
Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands whi...Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain. In this review, three main strategies, i.e., phytoexclusion, phytostabilization, and phytoextraction, are proposed to establish cropping systems for production of edible and non-edible plants, and for extraction of elements for industrial use. For safe production of food crops, the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance. Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agricultural measures. Phytoextracting trace elements (e.g., As, Cd, Ni, and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites, and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests. We conclude that appropriate combinations of soil types, plant species/cultivars, and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.展开更多
A number of studies have focused on the effects of rare earth elements(REEs) on crop plants,while little attention has been paid on how tolerant plant species respond to increasing mixed REE concentrations.In this stu...A number of studies have focused on the effects of rare earth elements(REEs) on crop plants,while little attention has been paid on how tolerant plant species respond to increasing mixed REE concentrations.In this study,ramie(Boehmeria nivea L.) was exposed to a series of REE concentrations prepared with equimolar mixtures of 16 REEs(i.e.0,1.6,8,16,80,160,400,800 μmol/L) in order to explore REE accumulation and fractionation characteristics in ramie and the responses of this plant to mixed REEs.Results show that ramie root and shoot biomasses are unaffected under lower REE concentrations(1.6-80 μmol/L),while the growth of ramie and the uptake of nutrients especially Ca and Mn are largely inhibited under higher REE concentrations(160-800 μmol/L).The P and Mo concentrations in the roots increase with the increasing REE concentrations in the solution,suggestive of an involvement of P and Mo in dealing with the high concentrations of REEs in this plant.The preferential uptake of Ce and heavy REEs(HREEs) and the preferential transport of HREEs within the plant lead to a positive Ce anomaly and a HREE enrichment in ramie leaves.Our study suggests that ramie could be a good candidate for the phyto re mediation of heavily REE-contaminated soils(e.g.,REE mine tailings in southern China).Our results also shed light on points of taking into account phytoremediation management strategies of REEcontaminated soils(e.g.,P and Mo fertilization).展开更多
Geogenic lead (Pb) is considered to be less bioavailable than anthropogenic Pb and exerts less effect on the soil fauna. However,Pb contamination in vegetables has been reported in the case of geogenic anomalies, even...Geogenic lead (Pb) is considered to be less bioavailable than anthropogenic Pb and exerts less effect on the soil fauna. However,Pb contamination in vegetables has been reported in the case of geogenic anomalies, even at moderate concentrations (around 170 mgkg^(-1)). In this study, we investigated collembolan communities using both taxonomic- and trait-based approaches and observed fungal communities to assess the effects of a moderate geogenic Pb anomaly on collembolans and fungi in an urban vegetable garden soil.Results indicated that geogenic Pb indeed modified fungi communities and altered the functional structure of collembolan communities in garden soils. Although geogenic Pb presented low bioavailability, it affected soil fauna and vegetables similar to anthropogenic Pb.展开更多
文摘The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi and Walia, and two control sites (Gassi and Walia). A total of fifty (50) soil samples were taken (24 from the Gassi site, 24 from the Walia site and 2 as control soils) and then analyzed to determine a number of physico-chemical parameters (pH, OM and electrical conductivity) and heavy metal concentrations in the various soils. The TME content (As, Cd, Cu, Cr, Ni, Pb, Hg and Zn) of the soils was determined by plasma-coupled Atomic Emission Spectrometry. In order to assess the level of contamination in Gassi and Walia soils, the geoaccumulation index (GeoIndex), contamination factor and degree of contamination were calculated. Results for physico-chemical parameters revealed that pH ranged from acidic (4.6) to moderately neutral (6.5), electrical conductivity was higher in cultivated soils (mean 292.14 μs/cm) than in control soils (mean 149.33 μs/cm), and soils were rich in organic matter. Overall, heavy metal concentrations in cultivated soils were higher than in control soils. The pollution estimate shows that soils in the area have no moderate contamination. The increase in TME concentrations in cultivated soils is thought to be due to the input of agricultural inputs to the soil. However, these levels are below the Average shale reference and Canadian guidelines for agricultural soil quality. Principal component analysis shows that metals are positively and significantly correlated with each other, and negatively and moderately significantly correlated with each other.
基金The Hi-Tech Research and Development Program (863) of China (No. 2001-AA-640501-3)French-Chinese Programme deRecherche Avancee (No. PRA E-03-02) the National Natural Science Foundation of China (No. 40571141)
文摘Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the present study, laboratory batch experiment of metal solubilization, cress seeds germination were undertaken to investigate the metal-mobilizing capability and the phytotoxicity of organic additives, including ethylene diamine triacetic acid (EDTA), citric acid, acetic acid, oxalic acid, glutamine and monosodium glutamate waste liquid (MGWL) from food industry. Experiments in pots were carried out to study the effects of the additives on Zn and Cd phytoextraction. Furthermore, a leaching experiment with lysimeter was performed to evaluate the environmental risks of additive-induced leaching to underground water. The results showed that EDTA had a strong mobilizing ability for Zn and Cd, followed by mixed reagent (MR) and MGWL. MGWL and acetic acid at 5 mmol equivalent per liter resulted in seed germination index less than 2%. Experiments in pots verified the phytotoxicity of acetic acid and MGWL. Addition of the mixed reagent at 6--10 mmol/kg significantly increased Zn phytoextraction by Thlaspi caerulescens. The same for EDTA and the mixed reagent at 10 mmol/kg by Sedum dfredii. But only mixed reagents could significantly increase Cd phytoextraction by the studied hyperaccumulators. This suggested that the strong chelant was not always the good agent to enhance phytoextraction. S. alfredii combined with 2--10 mmol/kg soil MR was preferred for phytoremediation of Cd/Zn contaminated soils in southern China, this could result in high phytoextraction of Cd/Zn and reduce the leaching risk to underground water than EDTA assisted phytoextration.
基金Supported by the National Natural Science Foundation of China(Nos.41171374 and 41101483)the Fundamental Research Funds for the Central Universities of China(No.101gzd10)+1 种基金the National Science Foundation for Distinguished Young Scholars of China(No.41225004)the National High Technology Research and Development Program of China(No.2012-AA-06A202)
文摘Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set theory was applied to evaluate the uncertainties of three risk indicators,namely,plant growth,groundwater safety and human health,of a restored site that had been previously polluted by heavy metals. The concept model classified the grade and importance of risk factors by an 11-level ranking system and was able to yield a comprehensive risk result rather than multi-risk results for complex risk indicators. Modeling results showed that the risks to the three indicators were effectively reduced after the remediation. Moreover,great sensitivity of the risks was found related to the weight distribution among the three risk indicators. In general,the risks of both polluted and restored soils to the environment were in the order of groundwater safety > plant growth > human health. The model was proved to solve the problems of multi-risk results due to complex risk indicators that previously encountered by other researchers,which made it helpful in decision-making and management of restored soils.
基金Supported by the Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China and the Chinese Scholarship Council
文摘Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain. In this review, three main strategies, i.e., phytoexclusion, phytostabilization, and phytoextraction, are proposed to establish cropping systems for production of edible and non-edible plants, and for extraction of elements for industrial use. For safe production of food crops, the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance. Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agricultural measures. Phytoextracting trace elements (e.g., As, Cd, Ni, and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites, and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests. We conclude that appropriate combinations of soil types, plant species/cultivars, and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.
基金Project supported by the Key R&D Program of Jiangxi Province(20192ACB70016)the National Natural Science Foundation of China(41771343)+1 种基金the 111 Project(B18060)the Sino-French Cai Yuanpei Programme(38896SC)。
文摘A number of studies have focused on the effects of rare earth elements(REEs) on crop plants,while little attention has been paid on how tolerant plant species respond to increasing mixed REE concentrations.In this study,ramie(Boehmeria nivea L.) was exposed to a series of REE concentrations prepared with equimolar mixtures of 16 REEs(i.e.0,1.6,8,16,80,160,400,800 μmol/L) in order to explore REE accumulation and fractionation characteristics in ramie and the responses of this plant to mixed REEs.Results show that ramie root and shoot biomasses are unaffected under lower REE concentrations(1.6-80 μmol/L),while the growth of ramie and the uptake of nutrients especially Ca and Mn are largely inhibited under higher REE concentrations(160-800 μmol/L).The P and Mo concentrations in the roots increase with the increasing REE concentrations in the solution,suggestive of an involvement of P and Mo in dealing with the high concentrations of REEs in this plant.The preferential uptake of Ce and heavy REEs(HREEs) and the preferential transport of HREEs within the plant lead to a positive Ce anomaly and a HREE enrichment in ramie leaves.Our study suggests that ramie could be a good candidate for the phyto re mediation of heavily REE-contaminated soils(e.g.,REE mine tailings in southern China).Our results also shed light on points of taking into account phytoremediation management strategies of REEcontaminated soils(e.g.,P and Mo fertilization).
基金supported by the ANR (French National Agency of Research, JASSUR research project ANR-12-VBDU-0011)
文摘Geogenic lead (Pb) is considered to be less bioavailable than anthropogenic Pb and exerts less effect on the soil fauna. However,Pb contamination in vegetables has been reported in the case of geogenic anomalies, even at moderate concentrations (around 170 mgkg^(-1)). In this study, we investigated collembolan communities using both taxonomic- and trait-based approaches and observed fungal communities to assess the effects of a moderate geogenic Pb anomaly on collembolans and fungi in an urban vegetable garden soil.Results indicated that geogenic Pb indeed modified fungi communities and altered the functional structure of collembolan communities in garden soils. Although geogenic Pb presented low bioavailability, it affected soil fauna and vegetables similar to anthropogenic Pb.