The oxygen isotope ratios of whole-rock, common rock-forming minerals and zircon from Mesozoic A-type granitic pluton at Nianzishan in northeastern China were analyzed by the conventional BrF5 method and the laser-pro...The oxygen isotope ratios of whole-rock, common rock-forming minerals and zircon from Mesozoic A-type granitic pluton at Nianzishan in northeastern China were analyzed by the conventional BrF5 method and the laser-probe technique, respectively. Both whole-rock and rock-forming minerals show large δ18O variations up to 5.5‰ with significant oxygen isotope disequilibrium between zircon and the other minerals, whereas the δ18O values of zircon are tightly clustered between 3.12‰ and 4.19‰ and thus lower than the normal-mantle δ18O values. These results indicate that the Nianzishan A-type granite experienced two-stage water-rock interactions subsequentially. The remarkably low zircon δ18O values are genetically due to sea-water exchange with granite protolith in the first stage, and the oxygen isotope disequilibrium fractionations between zircon and rock-forming minerals are caused by mete-oric-hydrothermal alteration in the second stage. It is inferred that the 18O-depleted A-type granitic magma展开更多
The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites c...The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites cover a wide range of -30.7‰ - +1.5‰, whereasthose of apatites only have a small range of -28.1‰- -21.0‰. Some of the eclogites with thehigh δ13C values suffered retrogressive alteration by CO2-bearing fluids. The low δ13C values of the apatites indicate that the eclogites contain surficial carbon of organic origin. It is concluded that protoliths of the eclogites were exposed to the surface of the Earth, and that the carbon-bearing fluid was depleted in 13C during the eclogite-facies metamorphism.展开更多
基金This workwas supported by the Chinese Academy of Sciences (Grant No. KZCX2-107)the National Natural Science Foundation of China (Grant No. 49603043) and the University of Science and Technology of China (Grant No. KB0724).
文摘The oxygen isotope ratios of whole-rock, common rock-forming minerals and zircon from Mesozoic A-type granitic pluton at Nianzishan in northeastern China were analyzed by the conventional BrF5 method and the laser-probe technique, respectively. Both whole-rock and rock-forming minerals show large δ18O variations up to 5.5‰ with significant oxygen isotope disequilibrium between zircon and the other minerals, whereas the δ18O values of zircon are tightly clustered between 3.12‰ and 4.19‰ and thus lower than the normal-mantle δ18O values. These results indicate that the Nianzishan A-type granite experienced two-stage water-rock interactions subsequentially. The remarkably low zircon δ18O values are genetically due to sea-water exchange with granite protolith in the first stage, and the oxygen isotope disequilibrium fractionations between zircon and rock-forming minerals are caused by mete-oric-hydrothermal alteration in the second stage. It is inferred that the 18O-depleted A-type granitic magma
文摘The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites cover a wide range of -30.7‰ - +1.5‰, whereasthose of apatites only have a small range of -28.1‰- -21.0‰. Some of the eclogites with thehigh δ13C values suffered retrogressive alteration by CO2-bearing fluids. The low δ13C values of the apatites indicate that the eclogites contain surficial carbon of organic origin. It is concluded that protoliths of the eclogites were exposed to the surface of the Earth, and that the carbon-bearing fluid was depleted in 13C during the eclogite-facies metamorphism.