Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary...Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.展开更多
Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The metho...Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 61841103,61673164,and 61602397in part by the Natural Science Foundation of Hunan Provincial under Grants 2016JJ2041 and 2019JJ50106+1 种基金in part by the Key Project of Education Department of Hunan Provincial under Grant 18B385and in part by the Graduate Research Innovation Projects of Hunan Province under Grants CX2018B805 and CX2018B813.
文摘Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.
文摘Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.