期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Astragaloside Ⅳ inhibits pathological functions of gastric cancer-associated fibroblasts 被引量:15
1
作者 Zhen-Fei Wang Da-Guang Ma +8 位作者 Zhe Zhu Yong-Ping Mu Yong-Yan Yang Li Feng Hao Yang Jun-Qing Liang Yong-Yan Liu Li Liu Hai-Wen Lu 《World Journal of Gastroenterology》 SCIE CAS 2017年第48期8512-8525,共14页
AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts,and to explore the underlying mechanism.METHODS Paired gastric normal fibroblast(GNF) and gas... AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts,and to explore the underlying mechanism.METHODS Paired gastric normal fibroblast(GNF) and gastric cancer-associated fibroblast(GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside Ⅳ. Conditioned media were prepared from GNFs,GCAFs,control-treated GCAFs,and astragaloside Ⅳ-treated GCAFs,and used to culture BGC-823 human gastric cancer cells. Proliferation,migration and invasion capacities of BGC-823 cells were determined by MTT,wound healing,and Transwell invasion assays,respectively. The action mechanism of astragaloside Ⅳ was investigated by detecting the expression of micro RNAs and the expression and secretion of the oncogenic factor,macrophage colonystimulating factor(M-CSF),and the tumor suppressive factor,tissue inhibitor of metalloproteinase 2(TIMP2),in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined.RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation,migration,and invasion than GNFs(P < 0.01). Astragaloside Ⅳ treatment strongly inhibited the proliferation-,migration-and invasion-promoting capacities of GCAFs(P < 0.05 for 10 μmol/L,P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs,GCAFs expressed a lower level of micro RNA-214(P < 0.01) and a higher level of micro RNA-301 a(P < 0.01). Astragaloside Ⅳ treatment significantly upregulated micro RNA-214 expression(P < 0.01) and down-regulated micro RNA-301 a expression(P < 0.01) in GCAFs. Reestablishing the micro RNA expression balance subsequently suppressed M-CSF production(P < 0.01) and secretion(P < 0.05),and elevated TIMP2 production(P < 0.01) and secretion(P < 0.05). Consequently,the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside Ⅳ.CONCLUSION Astragaloside Ⅳ can inhibit the pathological functions of GCAFs by correcting their dysregulation of micro RNA expression,and it is promisingly a potent therapeutic agent regulating tumor microenvironment. 展开更多
关键词 ASTRAGALOSIDE GASTRIC cancer-associated FIBROBLASTS Proliferation Migration INVASION Micro RNA
下载PDF
Paeoniflorin Inhibits Migration-and Invasion-Promoting Capacities of Gastric Cancer Associated Fibroblasts 被引量:9
2
作者 WANG Zhen-fei MA Da-guang +5 位作者 WANG Ling FENG Li FU Jian-wei LI Ying WANG Dan-ting JIA Yong-feng 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2019年第11期837-844,共8页
Objective: To investigate the inhibitory effects of paeoniflorin on migration- and invasionpromoting capacities of gastric cancer associated fibroblasts (GCAFs) and to explore the molecular mechanism underlying the ef... Objective: To investigate the inhibitory effects of paeoniflorin on migration- and invasionpromoting capacities of gastric cancer associated fibroblasts (GCAFs) and to explore the molecular mechanism underlying the effects. Methods: Paired gastric normal fibroblast (GNF) and GCAF cultures were established from resected tissues. GCAFs were treated with control medium, or 2.5, 5 or 10 μg/mL paeoniflorin. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs and paeoniflorin-treated GCAFs, and used to culture AGS human gastric cancer cells. The migration and invasion capacities of AGS cells were determined with wound healing test and transwell invasion assay, respectively. The interleukin 6 (IL-6) mRNA and microRNA-149 expression in GCAFs were detected by reverse transcription-quantitative polymerase chain reaction. The IL-6 protein expression and secretion by GCAFs were measured with Western blot and enzymelinked immunosorbent assay analysis, respectively. The protein levels of phosphorylated signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase (MMP) and MMP9 in AGS cells were examined by Western blot. Results: GCAFs displayed enhanced capacities to induce AGS cell migration and invasion as compared with GNFs. Paeoniflorin treatment significantly inhibited the migration- and invasion-promoting capacities of GCAFs (P<0.05). GCAFs produced and secreted more IL-6 into the conditioned medium than GNFs, leading to over-activation of STAT3-MMP signaling in AGS cells. Paeoniflorin suppressed IL-6 production and secretion by up-regulating microRNA149 expression in GCAFs, and subsequently prevented GCAFs from activating IL-6-STAT3-MMP signaling of AGS cells. Conclusions: Paeoniflorin inhibits the migration- and invasion-promoting capacities of GCAFs by targeting microRNA-149 and IL-6. Paeoniflorin is potentially a novel therapeutic agent against cancer microenvironment. 展开更多
关键词 PAEONIFLORIN Chinese medicine GASTRIC cancer ASSOCIATED FIBROBLASTS MIGRATION INVASION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部