Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptog...Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptography (ECC). In this paper, we provide a survey on the multi-precision multiplication and squaring techniques, and make special focus on the comparison of their performance and memory footprint on sensor nodes using 8-bit processors, Different from the previous work, our advantages are in at least three aspects. Firstly, this survey includes the existing techniques for multi- precision multiplication and squaring on sensor nodes over prime fields. Secondly, we analyze and evaluate each method in a systematic and objective way. Thirdly, this survey also provides suggestions for selecting appropriate multiplication and squaring techniques for concrete implementation of public-key cryptography. At the end of this survey, we propose the research challenges on efficient implementation of the multiplication and the squaring operations based on our observation.展开更多
Signcryption is a public key cryptographic method that achieves unforgeability and confidentiality simultaneously with significantly smaller overhead than that required by "digital signature followed by public key en...Signcryption is a public key cryptographic method that achieves unforgeability and confidentiality simultaneously with significantly smaller overhead than that required by "digital signature followed by public key encryption". It does this by signing and encr.ypting a message in a single step. An aggregate signcryption scheme allows individual signcryption ciphertexts intended for the same recipi- ent to be aggregated into a single (shorter) combined ciphertext without losing any of the security guarantees. We present an aggregate signcryption scheme in the identity-based setting using multilinear maps, and provide a proof of security in the standard model. To the best of our knowledge, our new scheme is the first aggregate signcryption scheme that is secure in the standard model.展开更多
文摘Multi-precision multiplication and squaring are the performance-critical operations for the implementation of public-key cryptography, such as exponentiation in RSA, and scalar multiplication in elliptic curve cryptography (ECC). In this paper, we provide a survey on the multi-precision multiplication and squaring techniques, and make special focus on the comparison of their performance and memory footprint on sensor nodes using 8-bit processors, Different from the previous work, our advantages are in at least three aspects. Firstly, this survey includes the existing techniques for multi- precision multiplication and squaring on sensor nodes over prime fields. Secondly, we analyze and evaluate each method in a systematic and objective way. Thirdly, this survey also provides suggestions for selecting appropriate multiplication and squaring techniques for concrete implementation of public-key cryptography. At the end of this survey, we propose the research challenges on efficient implementation of the multiplication and the squaring operations based on our observation.
文摘Signcryption is a public key cryptographic method that achieves unforgeability and confidentiality simultaneously with significantly smaller overhead than that required by "digital signature followed by public key encryption". It does this by signing and encr.ypting a message in a single step. An aggregate signcryption scheme allows individual signcryption ciphertexts intended for the same recipi- ent to be aggregated into a single (shorter) combined ciphertext without losing any of the security guarantees. We present an aggregate signcryption scheme in the identity-based setting using multilinear maps, and provide a proof of security in the standard model. To the best of our knowledge, our new scheme is the first aggregate signcryption scheme that is secure in the standard model.