This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studi...This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studied in dual solution with arsenate. Moreover, the combined effect of ions and other water characteristics were examined with a natural groundwater sample which was spiked with a certain amount of arsenate. Arsenate batch adsorption experiments were carried out with two different kinds of maghemite-a commercially, available one and a homemade one using the sol-gel orocess. Sulohate (≤250 mg.L-1) and nitrate (≤ 12 mg.L-1) had a neglivible effect onthe arsenate (0.5 mg.L-1) adsorption at pH 3. However, both phosphate (42.9 mg·L-1) and silicate (450 mg.L-j) had an adverse impact on arsenate (43 mg.L-1) adsorption at pH 7. Phosphate (41.5 mg.L-1) showed minimal competition with arsenate (0.5 mg.L-1), while silicate (410 mg.L-1) inhibition was insignificant for all studied As(V) concentrations at p.H 3. The removal of arsenate from the groundwater sample was as efficient as from labo-ratory water tor 0.3 mgL -1 AS(V) botll at pH3 and pH7.展开更多
A medium molecular weight powdered chitosan modified carbon paste electrode was used to investigate the electrochemical behaviour by cyclic voltammetry of the pharmacologically-active ingredient mangiferin (MG). An ir...A medium molecular weight powdered chitosan modified carbon paste electrode was used to investigate the electrochemical behaviour by cyclic voltammetry of the pharmacologically-active ingredient mangiferin (MG). An irreversible system was observed, with a peak at ﹢0.55 V (vs Ag/AgCl). The peak current increases about fourfold, at the modified electrode in comparison with that recorded at the chitosan free carbon paste electrode. This allowed the use of adsorptive stripping voltammetry to develop a simple and sensitive electroanalytical method for the determination of MG. The influence of key parameters was investigated, including the electrolysis potential, the preconcentration time, the pH of supporting electrolyte and MG concentration. Upon optimisation of these parameters, the electrode response was found to be directly proportional to the concentration of MG in the range from 2.06 × 10﹣6 M to 6.74 × 10﹣5 M, leading to a detection limit of 1.84 μM for 240 s preconcentration at ﹣0.1 V. A mechanism was also proposed for the electrochemical oxidation of MG.展开更多
文摘This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studied in dual solution with arsenate. Moreover, the combined effect of ions and other water characteristics were examined with a natural groundwater sample which was spiked with a certain amount of arsenate. Arsenate batch adsorption experiments were carried out with two different kinds of maghemite-a commercially, available one and a homemade one using the sol-gel orocess. Sulohate (≤250 mg.L-1) and nitrate (≤ 12 mg.L-1) had a neglivible effect onthe arsenate (0.5 mg.L-1) adsorption at pH 3. However, both phosphate (42.9 mg·L-1) and silicate (450 mg.L-j) had an adverse impact on arsenate (43 mg.L-1) adsorption at pH 7. Phosphate (41.5 mg.L-1) showed minimal competition with arsenate (0.5 mg.L-1), while silicate (410 mg.L-1) inhibition was insignificant for all studied As(V) concentrations at p.H 3. The removal of arsenate from the groundwater sample was as efficient as from labo-ratory water tor 0.3 mgL -1 AS(V) botll at pH3 and pH7.
文摘A medium molecular weight powdered chitosan modified carbon paste electrode was used to investigate the electrochemical behaviour by cyclic voltammetry of the pharmacologically-active ingredient mangiferin (MG). An irreversible system was observed, with a peak at ﹢0.55 V (vs Ag/AgCl). The peak current increases about fourfold, at the modified electrode in comparison with that recorded at the chitosan free carbon paste electrode. This allowed the use of adsorptive stripping voltammetry to develop a simple and sensitive electroanalytical method for the determination of MG. The influence of key parameters was investigated, including the electrolysis potential, the preconcentration time, the pH of supporting electrolyte and MG concentration. Upon optimisation of these parameters, the electrode response was found to be directly proportional to the concentration of MG in the range from 2.06 × 10﹣6 M to 6.74 × 10﹣5 M, leading to a detection limit of 1.84 μM for 240 s preconcentration at ﹣0.1 V. A mechanism was also proposed for the electrochemical oxidation of MG.