Salivary glands provide saliva to maintain oral health, and a loss of salivary gland function substantially decreases quality-of-life. Understanding the biological mechanisms that generate salivary glands during embry...Salivary glands provide saliva to maintain oral health, and a loss of salivary gland function substantially decreases quality-of-life. Understanding the biological mechanisms that generate salivary glands during embryonic development may identify novel ways to regenerate function or design artificial salivary glands. This review article summarizes current research on the process of branchingmorphogenesis of salivary glands, which creates gland structure during development. We highlight exciting new advances and opportunities in studies of cell-cell interactions, mechanical forces, growth factors, and gene expression patterns to improve our understanding of this important process.展开更多
Muscle satellite cells,as muscle stem cells,play a critical role in the process of muscle regeneration,and effective muscle regeneration helps to restore muscle function and maintain the homeostasis of muscle tissues....Muscle satellite cells,as muscle stem cells,play a critical role in the process of muscle regeneration,and effective muscle regeneration helps to restore muscle function and maintain the homeostasis of muscle tissues.In damaged muscle,muscle satellite cells are activated to form new myofibers through the process of cell proliferation,migration,differentiation and fusion to complete muscle tissue regeneration.Meanwhile,this process is mainly affected by endogenous gene expression and many exogenous factors.Researches in recent years have shown that vitamins,as important nutrients,play an extremely important role in the process of muscle regeneration.Therefore,this article reviewed the roles of vitamins in the regeneration of muscle satellite cells,according to the latest research progress.It would provide more theoretical and data support for the regeneration and repair of muscle damage,muscle atrophy and other muscle diseases,so that it could be better applied in the field of muscle regeneration researches and serve human health.展开更多
MG53 is an essential component of the cell membrane repair machinery,participating in the healing of dermal wounds.Here we develop a novel delivery system using recombinant human MG53(rhMG53)protein and a reactive oxy...MG53 is an essential component of the cell membrane repair machinery,participating in the healing of dermal wounds.Here we develop a novel delivery system using recombinant human MG53(rhMG53)protein and a reactive oxygen species(ROS)-scavenging gel to treat diabetic wounds.Mice with ablation of MG53 display defective hair follicle structure,and topical application of rhMG53 can promote hair growth in the mg53/mice.Cell lineage tracing studies reveal a physiological function of MG53 in modulating the proliferation of hair follicle stem cells(HFSCs).We find that rhMG53 protects HFSCs from oxidative stress-induced apoptosis and stimulates differentiation of HSFCs into keratinocytes.The cytoprotective function of MG53 is mediated by STATs and MAPK signaling in HFSCs.The thermosensitive ROS-scavenging gel encapsulated with rhMG53 allows for sustained release of rhMG53 and promotes healing of chronic cutaneous wounds and hair follicle development in the db/db mice.These findings support the potential therapeutic value of using rhMG53 in combination with ROS-scavenging gel to treat diabetic wounds.展开更多
基金Supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research,NIH
文摘Salivary glands provide saliva to maintain oral health, and a loss of salivary gland function substantially decreases quality-of-life. Understanding the biological mechanisms that generate salivary glands during embryonic development may identify novel ways to regenerate function or design artificial salivary glands. This review article summarizes current research on the process of branchingmorphogenesis of salivary glands, which creates gland structure during development. We highlight exciting new advances and opportunities in studies of cell-cell interactions, mechanical forces, growth factors, and gene expression patterns to improve our understanding of this important process.
文摘Muscle satellite cells,as muscle stem cells,play a critical role in the process of muscle regeneration,and effective muscle regeneration helps to restore muscle function and maintain the homeostasis of muscle tissues.In damaged muscle,muscle satellite cells are activated to form new myofibers through the process of cell proliferation,migration,differentiation and fusion to complete muscle tissue regeneration.Meanwhile,this process is mainly affected by endogenous gene expression and many exogenous factors.Researches in recent years have shown that vitamins,as important nutrients,play an extremely important role in the process of muscle regeneration.Therefore,this article reviewed the roles of vitamins in the regeneration of muscle satellite cells,according to the latest research progress.It would provide more theoretical and data support for the regeneration and repair of muscle damage,muscle atrophy and other muscle diseases,so that it could be better applied in the field of muscle regeneration researches and serve human health.
文摘MG53 is an essential component of the cell membrane repair machinery,participating in the healing of dermal wounds.Here we develop a novel delivery system using recombinant human MG53(rhMG53)protein and a reactive oxygen species(ROS)-scavenging gel to treat diabetic wounds.Mice with ablation of MG53 display defective hair follicle structure,and topical application of rhMG53 can promote hair growth in the mg53/mice.Cell lineage tracing studies reveal a physiological function of MG53 in modulating the proliferation of hair follicle stem cells(HFSCs).We find that rhMG53 protects HFSCs from oxidative stress-induced apoptosis and stimulates differentiation of HSFCs into keratinocytes.The cytoprotective function of MG53 is mediated by STATs and MAPK signaling in HFSCs.The thermosensitive ROS-scavenging gel encapsulated with rhMG53 allows for sustained release of rhMG53 and promotes healing of chronic cutaneous wounds and hair follicle development in the db/db mice.These findings support the potential therapeutic value of using rhMG53 in combination with ROS-scavenging gel to treat diabetic wounds.