This work is a result of previously done studies on the synthesis of A2FeVIO4 wet ferrate (VI) formula, using chlorine as an oxidant. The major problem of these ferrates is related to their stability over time. This b...This work is a result of previously done studies on the synthesis of A2FeVIO4 wet ferrate (VI) formula, using chlorine as an oxidant. The major problem of these ferrates is related to their stability over time. This brings us to identify and optimize the critical parameters influencing the preparation of the Na2FeO4 at room stable phase with acceptable performance. The use of water bleach (hypochlorite ClO‾) at a chlorometric degree of 50°F in the synthesis of the Na2FeO4 ambient stable phase promotes the oxidation of iron (II) iron to (VI) in a concentrated NaOH alkaline medium. The synthesis reaction is in the presence of FeSO4 7H2O hydrated iron sulfate at a temperature of about 55°C in order to simplify the synthesis process, to enhance the production of the Fe (VI) and to meet the growing demand of ferrates (VI) for their interest in the treatment of water. Monitoring the degradation of synthesized Na2FeO4 shows its stability up to 12 months, which facilitates storage and transportation. The phases obtained were characterized by IR spectroscopy, and RX by UV spectrophotometer, measuring the optical density at 507 nm.展开更多
文摘This work is a result of previously done studies on the synthesis of A2FeVIO4 wet ferrate (VI) formula, using chlorine as an oxidant. The major problem of these ferrates is related to their stability over time. This brings us to identify and optimize the critical parameters influencing the preparation of the Na2FeO4 at room stable phase with acceptable performance. The use of water bleach (hypochlorite ClO‾) at a chlorometric degree of 50°F in the synthesis of the Na2FeO4 ambient stable phase promotes the oxidation of iron (II) iron to (VI) in a concentrated NaOH alkaline medium. The synthesis reaction is in the presence of FeSO4 7H2O hydrated iron sulfate at a temperature of about 55°C in order to simplify the synthesis process, to enhance the production of the Fe (VI) and to meet the growing demand of ferrates (VI) for their interest in the treatment of water. Monitoring the degradation of synthesized Na2FeO4 shows its stability up to 12 months, which facilitates storage and transportation. The phases obtained were characterized by IR spectroscopy, and RX by UV spectrophotometer, measuring the optical density at 507 nm.