As a promising high capacity anode material for lithium ion batteries, the lithium insertion performance and possible insertion mechanism of binary alloy of NiSi2 were discussed. The initial lithium insertion of cryst...As a promising high capacity anode material for lithium ion batteries, the lithium insertion performance and possible insertion mechanism of binary alloy of NiSi2 were discussed. The initial lithium insertion of crystal NiSi2 can reach up to 600 mAh·g-1, but large irreversible capacity occurrs simultaneously for serious structure transformation and the irreversible phase forms. XRD and XPS were employed to detect the crystal structure and composition changes produced by lithium insertion. The lithium insertion-extraction behavior of NiSi2 electrode is similar to that of silicon after the first discharge. The structure stability seems related to the non-stoichimometric Ni-Si compound formed by lithium insertion into NiSi2.展开更多
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
Orthorhombic niobium pentoxide (T-Nb2O5)/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2Os nanowires to dispersed graphene oxide nanosheets followed by a high-temperature ph...Orthorhombic niobium pentoxide (T-Nb2O5)/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2Os nanowires to dispersed graphene oxide nanosheets followed by a high-temperature phase transformation. Electrochemical measurements showed that the nanohybrid anodes possessed enhanced reversible capacity and superior cycling stability compared to those of a pristine T-Nb205 nanowire electrode. Owing to the strong bonds between graphene nanosheets and T-Nb2O5 nanowires, the nanohybrids achieved an initial capacity of 227 mAh·g^-1. Additionally, non-aqueous asymmetric supercapacitors (ASCs) were fabricated with the synthesized nanohybrids as the anode and activated carbon as the cathode. The 3 V Li-ion ASC with a LiPF6-based organic electrolyte achieved an energy density of 45.1 Wh·kg^-1 at 715.2 W·kg^-1. The working potential could be further enhanced to 4 V when a polymer ionogel separator (PVDF-HFP/LiTFSI/EMIMBF4) and formulated ionic liquid electrolyte were employed. Such a quasi-solid state ASC could operate at 60℃ and delivered a maximum energy density of 70 Wh·kg^-1 at 1 kW·kg^-1.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 50502009).
文摘As a promising high capacity anode material for lithium ion batteries, the lithium insertion performance and possible insertion mechanism of binary alloy of NiSi2 were discussed. The initial lithium insertion of crystal NiSi2 can reach up to 600 mAh·g-1, but large irreversible capacity occurrs simultaneously for serious structure transformation and the irreversible phase forms. XRD and XPS were employed to detect the crystal structure and composition changes produced by lithium insertion. The lithium insertion-extraction behavior of NiSi2 electrode is similar to that of silicon after the first discharge. The structure stability seems related to the non-stoichimometric Ni-Si compound formed by lithium insertion into NiSi2.
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
文摘Orthorhombic niobium pentoxide (T-Nb2O5)/reduced graphene oxide nanohybrids were fabricated via the hydrothermal attachment of Nb2Os nanowires to dispersed graphene oxide nanosheets followed by a high-temperature phase transformation. Electrochemical measurements showed that the nanohybrid anodes possessed enhanced reversible capacity and superior cycling stability compared to those of a pristine T-Nb205 nanowire electrode. Owing to the strong bonds between graphene nanosheets and T-Nb2O5 nanowires, the nanohybrids achieved an initial capacity of 227 mAh·g^-1. Additionally, non-aqueous asymmetric supercapacitors (ASCs) were fabricated with the synthesized nanohybrids as the anode and activated carbon as the cathode. The 3 V Li-ion ASC with a LiPF6-based organic electrolyte achieved an energy density of 45.1 Wh·kg^-1 at 715.2 W·kg^-1. The working potential could be further enhanced to 4 V when a polymer ionogel separator (PVDF-HFP/LiTFSI/EMIMBF4) and formulated ionic liquid electrolyte were employed. Such a quasi-solid state ASC could operate at 60℃ and delivered a maximum energy density of 70 Wh·kg^-1 at 1 kW·kg^-1.