Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th...Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.展开更多
Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-envir...Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance.The remote sensing ecological index(RSEI)can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment.In this paper,Moderate Resolution Imaging Spectroradiometer(MODIS)images during the growing period(July-September)from 2000 to 2020 were obtained from the Google Earth Engine(GEE)platform to calculate the RSEI in the three northern regions of China(the Three-North region).The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality,and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality.In addition,ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector.The results showed that from 2000 to 2020,the RSEI in the Three-North region exhibited obvious regional characteristics:the RSEI values in Northwest China were generally between 0.2 and 0.4;the RSEI values in North China gradually increased from north to south,ranging from 0.2 to 0.8;and the RSEI values in Northeast China were mostly above 0.6.The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a,showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality,of which the areas with improved,basically stable and degraded eco-environmental quality accounted for 65.39%,26.82%and 7.79%of the total study area,respectively.The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years.However,the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence,and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection.Average relative humidity,accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region,and two-factor interaction also had a greater influence on eco-environmental quality than single factors.The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors.The effect of anthropogenic factors(such as population density and land use type)on eco-environmental quality gradually increased over time.This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.展开更多
Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.Howeve...Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.展开更多
Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change m...Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks.展开更多
Genomics research of Populus deltoides,an important timber species that is widely planted worldwide,is an important part of poplar breeding.Currently,the nuclear and chloroplast genome of P.deltoides have been sequenc...Genomics research of Populus deltoides,an important timber species that is widely planted worldwide,is an important part of poplar breeding.Currently,the nuclear and chloroplast genome of P.deltoides have been sequenced,but its mitochondrial genome(mitogenome)has not been reported.To further explore the evolution and phylogeny of P.deltoides,the mitogenome of P.deltoides I-69 was assembled using reads from Nanopore and Illumina sequencing platforms and found to consist of 802,637 bp and three circular chromosomes(336,205,280,841,and 185,591 bp)containing 58 genes(34 protein-coding genes,21 tRNA genes,and 3 rRNA genes).RNA analysis in combination with several species showed signifi cantly fewer RNA editingsites in the mitogenomes of poplar and other angiosperms than in gymnosperms.Sequence transfer analysis showed extensive mitogenome rearrangements in Populus species,and with evolution from lower to higher plants,tRNA transfer from chloroplasts to mitochondria became increasingly frequent.In a phylogenetic analysis,the evolutionary status of P.deltoides was determined,and the section Populus was supported.Our results based on the fi rst report of a multicircular conformation of the Populus mitogenome provide a basis for further study of the evolution and genetics of P.deltoides and other Populus species and for breeding programs.展开更多
Dietary parboiled rice(PR)has a low risk of disease,but little is known about the contribution of PR to the prevention of hyperlipidemia.The potential role and underlying mechanisms of PR in hyperlipidemia were evalua...Dietary parboiled rice(PR)has a low risk of disease,but little is known about the contribution of PR to the prevention of hyperlipidemia.The potential role and underlying mechanisms of PR in hyperlipidemia were evaluated in this study.Male C57BL/6J mice were fed with a normal diet,high-fat diet(HFD)containing refined rice(HFDRR)or PR(HFDPR).It was found that PR intervention improved lipid accumulation in mice.Transcriptomic data analysis revealed that 27 genes were up-regulated(mostly involved in lipid breakdown)and 86 genes were down-regulated(mostly involved in inflammatory responses)in the HFDPR group compared to the HFDRR group.And 15 differentially expressed genes(DEGs)were validated by quantitative real-time PCR(RT-qPCR),while protein interaction network showed that protein tyrosine phosphatase receptor type C(PTPRC)has a central role.The gut microbiota of mice was also altered after different dietary treatments,with higher ratio of Firmicutes and Bacteroidetes,increased abundances of Ruminococcaceae,Lachnospiraceae,Christensenellaceae,Porphyromonadaceae,Rikenellaceae and Prevotellaceae,and decreased abundances of Lactobacillaceae,Peptostreptococcaceae,Erysipelotrichaceae and Actinobacteria in the HFDRR group.In addition,it was observed that PPAR signaling pathway may act as a bridge between DEGs and differential gut microbiota.These results suggested that PR can prevent hyperlipidemia by modulating liver genes and gut microbiota.展开更多
The pattern of codon usage in the chloroplast genome of Populus alba was investigated. Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plo...The pattern of codon usage in the chloroplast genome of Populus alba was investigated. Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plot were conducted to analyze synonymous codon usage. The results of correspondence analysis showed that the distribution of genes on the major axis was significantly correlated with the frequency of use of G+C in synonymously variable third position of sense codon (GC3S), (r=0.349), and the positions of genes on the axis 2 and axis 3 were significantly correlated with CAI (r=-0.348, p〈0.01 and r=0.602, p〈0.01). The ENc for most genes was similar to that for the expected ENc based on the GC3s, but several genes with low ENc values were lying below the expected curve. All of these data indicated that codon usage was dominated by a mutational bias in chloroplast gcnome ofP. alba. The selection in nature for translational efficiency only played a minor role in shaping codon usage in the chloroplast genome ofP alba.展开更多
Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in...Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants. The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon usage. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.展开更多
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavele...The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.展开更多
Using total counts in simultaneous annual surveys, we monitored the population size and spatial distribution of oriental white storks (Ciconia boyciana) wintering in Poyang Lake between 1998 and 2011. Results showed...Using total counts in simultaneous annual surveys, we monitored the population size and spatial distribution of oriental white storks (Ciconia boyciana) wintering in Poyang Lake between 1998 and 2011. Results showed that Poyang Lake wetland is an important wintering ground for oriental white storks, with an annual average population number of 2 305+326. The population sizes in 2004, 2005, 2010, and 2011 were higher than the highest-ever estimate of its global population. In 2005, we recorded 3 789 individuals, which was the maximum population number within the period of 1998-2011. The storks inhabited 52 lakes, with the greatest distance between these lakes being 180.3 km. The storks presented a clustered distribution pattern in the Poyang Lake wetland, irrespective of the number of individuals or occurrence frequencies. Shahu, Dahuchi, Banghu, and Hanchihu were most frequently used lakes and had the largest annual average numbers of storks. There was a significant positive correlation between occurrence frequency and annual average number of storks in the lakes. Most of the lakes important for storks were covered by existing nature reserves, though some lakes outside the reserves were also frequently used. About 64.9%+ 5.5% of the storks were found in nature reserves. In addition, the storks more frequently used and clumped in significantly larger flocks in lakes within nature reserves than lakes outside.展开更多
Background:Migration theory suggests,and some empirical studies show, that in order to compete for the best breeding sites and increase reproductive success,long-distance avian migrants tend to adopt a time minimizati...Background:Migration theory suggests,and some empirical studies show, that in order to compete for the best breeding sites and increase reproductive success,long-distance avian migrants tend to adopt a time minimization strategy during spring migration, resulting in shorter duration spring migration compared to that in autumn.Methods:Using GPS/GSM transmitters,we tracked the full migrations of 11 Greater White-fronted Geese (Anser albifrons) between southeast China and the Russian Arctic,to reveal the migration timing and routes of the East Asian population, and compare the difference in duration between spring and autumn migration of this population.Results:We found that migration in spring (79 ± 12 days) took more than twice as long to cover the same distance as in autumn (35 ±7 days).This difference in migration duration was mainly determined by significantly more time spent in spring (59±16 days) than in autumn (23± 6days) at significantly more stopover sites. Conclusions:We suggest that these geese, thought to be partial capital breeders, spent almost three quarters of total migration time at spring stopover sites to acquire energy stores for ultimate investment in reproduction, although we cannot reject the hypothesis that timing of the spring thaw also contributed to stopover duration.In autumn,they acquired necessary energy stores on the breeding grounds sufficient to reach Northeast China staging areas almost without stop, which reduced stopover times in autumn and resulted in the faster autumn migration than spring.展开更多
Forest fires caused by natural forces or human activities are one of the major natural risks in Northeast China.The incidence and spatial distribution of these fires vary over time and across the forested areas in Jil...Forest fires caused by natural forces or human activities are one of the major natural risks in Northeast China.The incidence and spatial distribution of these fires vary over time and across the forested areas in Jilin Province,Northeast China.In this study,the incidence and distribution of 6519 forest fires from 1969 to 2013 in the province were investigated.The results indicated that the spatiotemporal distribution of the burnt forest area and the fire frequency varied significantly by month,year,and region.Fire occurrence displayed notable temporal patterns in the years after forest fire prevention measures were strictly implemented by the provincial government.Generally,forest fires in Jilin occurred in months when stubble and straw were burned and human activities were intense during traditional Chinese festivals.Baishan city,Jilin city,and Yanbian were defined as fire-prone regions for their high fire frequency.Yanbian had the highest frequency,and the fires tended to be large with the highest burned area per fire.Yanbian should thus be listed as the key target area by the fire management agency in Jilin Province for better fire prevention.展开更多
Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological im...Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was 499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and 0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model’s ability in simulating the interception of individual rainfall events were suggested.展开更多
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.展开更多
Long-term monthly precipitation data from 1960 to 2008 at 17 rain stations are analyzed to explore spatio-temporal variation of the seasonal and annual precipitation in the Poyang Lake basin, China, using anomaly anal...Long-term monthly precipitation data from 1960 to 2008 at 17 rain stations are analyzed to explore spatio-temporal variation of the seasonal and annual precipitation in the Poyang Lake basin, China, using anomaly analysis, simple linear regressive technique, Mann-Kendall trend test and Continuous Wavelet Transform. The results indicate that: (1) increasing precipitation trend is observed in summer and winter, while decreasing precipitation trend is identified in spring and autumn, and the above mentioned precipitation trends are not statistically significant;(2) changing trend of the areal average annual precipitation is non-significantly increasing, and increasing trend happens in almost the whole basin except in western and south-eastern small parts;(3) the spatial distribution of the seasonal and annual precipitation anomalies between 1991-2008 and 1960-2008 is similar to that of seasonal and annual precipitation trend during 1960-2008;(4) three main time-frequency distributions are observed in annual precipitation series during 1960- 2008, and they are 18 - 26 years, 8 - 14 years and 2 - 8 years, respectively;accordingly, there are three main periods in annual precipitation series, and they are 11-year, 22-year and 5-year respectively. This result will be helpful for further research on availability, scientific management and assessment of the water resources of the Poyang Lake basin.展开更多
Darwin’s finches are the most classic case of evolution.Early studies on the evolution of this species were mainly based on morphology.Until now,the mitochondrial genome of Geospiza magnirostris has been sequenced an...Darwin’s finches are the most classic case of evolution.Early studies on the evolution of this species were mainly based on morphology.Until now,the mitochondrial genome of Geospiza magnirostris has been sequenced and the study explored the characteristics of the complete genome of G.magnirostris and verified the evolutionary position of it.The 13 PCGs initiated by ATN codons.The stop codons of three PCGs(ND2,COX3 and ND4)were incomplete,with only T-or TA-replacing complete form TAA or TAG.All the tRNA genes expressed a typical cloverleaf secondary structure,except for tRNA^(Ser1)(AGY),whose dihydrouridine(DHU)arm was lack and instead with a simple loop.In the sequence of the control region of G.magnirostris,we found six simple repeat tandem sequences with a total length of 42 bp.Two characteristic conserved overlapping junction(ATGCTAA)and(CAAGAAAG)were observed as reported for eight selected Passeriformes birds.A special conserved overlapping junction(ATCTTACC)involved in mitochondrial transcription termination was found between tRNA^(Tyr) and COX1 in G.magnirostris’s control region.Four most frequently used amino acids in G.magnirostris’s PCGs were Leu1(CUN),Ile,Thr,Ala.The codon usage of G.magnirostris was relatively average,and there was no particular bias.The ratio Ka/Ks results showed that G.magnirostris receives less natural selection pressure.The phylogenetic relationships and cluster analysis of relative codon usage showed that G.magnirostris and Thraupis episcopus clustered in one branch.The phylogenetic position of G.magnirostris was consistent with the traditional taxonomic of Thraupis.The results supported the conclusion that G.magnirostris belongs to the morphological classification of the family Thraupidae.展开更多
The Tarim Basin,Xinjiang,China,a region important to the walnut industry,is affected by frequent heavy dust storms.Dust,including micro-particles(diameter<10μm),covers the surface of the walnut tree,thereby changi...The Tarim Basin,Xinjiang,China,a region important to the walnut industry,is affected by frequent heavy dust storms.Dust,including micro-particles(diameter<10μm),covers the surface of the walnut tree,thereby changing the surface-atmosphere interface microenvironment,which,in turn,influences the exterior and interior structure of the tree.Dust storms occur in spring and summer,during the flowering period of walnut,which is the key developmental stage leading to fruit formation.This study investigated the effects of dust on female flowers,male flowers,and the pollination of walnut.The morphological changes in the stigma during pollination were recorded.Stigma receptivity was studied via the benzidine–H2O2 method.Morphological features of the female floral organs and pollen were investigated using scanning electron microscopy.Pollen germination and pollen tube growth were examined by fluorescence microscopy.The results showed that dust had a significant inhibitory effect on male and female flowers,resulting in decreased catkin growth,reduced pollen viability(pollen viability was 20.13%),blocked pollen apertures,a reduced pollen germination rate on the stigma,and increased time needed for pollen tube appearance.Dust also had an inhibitory effect on stigma length and receptivity of female walnut flowers,with the length of the walnut stigma being reduced by 0.25~0.80 mm during the flowering process.In addition,there was decreased stigma mucus,resulting in stigma atrophy,decreased amount of pollen on the stigma,weakened stigma receptivity,and accelerated drying of female flowers.In the Tarim Basin,walnut flowering occurd at the same time as dust storms do,which had a negative impact on the floral organ,flowering and pollination of walnut.展开更多
Understanding species morphological variation across geographical ranges can serve as a first step for germplasm collection and the conservation of genetic resources.The morphological variability of Haematostaphis bar...Understanding species morphological variation across geographical ranges can serve as a first step for germplasm collection and the conservation of genetic resources.The morphological variability of Haematostaphis barteri Hook.F.(Anacardiaceae)in Benin(West Africa)was studied,using 11 traits related to panicles,fruits,leaves and leaflets.A total of 1,485 panicles,1,485 fruits,990 leaves and 4,950 leaflets were sampled.It was found that the sample provenance and site topography have a significant influence on the morphological traits.The discriminating morphological traits were the length of the panicles,the number of fruits per panicle,the length and width of fruits,the mass of the fresh fruit pulp mass,the length of leaves and petioles,the number of leaflets per leaf,length and width of leaflets.On the basis of these traits,four different morphotypes of H.barteri were identified,with however a small intra and inter group variability.The morphotype from sites established on the tops and the high slopes of hill produced larger and heavier fruits with higher pulp mass.This morphotype could be of interest for future varietal selection programs for the species in Benin.展开更多
The development of the mining industry has led to the appearance in many parts of the world of vast technogenic territories from which toxic heavy metals enter the environment and food chains.Physical,chemical,and bio...The development of the mining industry has led to the appearance in many parts of the world of vast technogenic territories from which toxic heavy metals enter the environment and food chains.Physical,chemical,and biological methods of cleaning industrial land due to technological complexity and hi gh cost are relatively little used on a large scale.Natural forest overgrowth of mining sites and the removal of heavy metals by woody plants can be an effective form of recovery.Therefore,the study of this process is of significant scientific and practical interest.The analysis of the annual growth in height and width of the annual rings of the stem of Scots pine(Pinus sylvestris L.) in 2004-2019 was made on the territory of the Uchalinsky mining and processing plant(South Ural,Russia) contaminated with heavy metals.Relatively hi gh concentrations of copper and zinc were found in soils,roots,bark,young shoots,comparable to exceeding the maximum allowable concentrations.Despite the spatial uniformity of the heavy metal content in the stands,the tree samples significantly differed in terms of annual growth.Results suggest that the lack of nutrients and not stress from exposure to heavy metals is the main reason for relatively low growth rates on slopes of industrial wastes.It was confirmed by studying the annual growth in height of the undergrowth in habitats with different soil cover conservation.The data prove the relatively high potential of Scots pine for the natural recovery of industrial lands polluted with heavy metals by mining enterprises.展开更多
Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive p...Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive process based on multi-flightline airborne hyperspectral data is lacking over large,forested areas influenced by both the effects of bidirectional reflectance distribution function(BRDF)and cloud shadow contamination.In this study,hyperspectral data were collected over the Mengjiagang Forest Farm in Northeast China in the summer of 2017 using the Chinese Academy of Forestry's LiDAR,CCD,and hyperspectral systems(CAF-LiCHy).After BRDF correction and cloud shadow detection processing,a tree species classification workflow was developed for sunlit and cloud-shaded forest areas with input features of minimum noise fraction reduced bands,spectral vegetation indices,and texture information.Results indicate that BRDF-corrected sunlit hyperspectral data can provide a stable and high classification accuracy based on representative training data.Cloud-shaded pixels also have good spectral separability for species classification.The red-edge spectral information and ratio-based spectral indices with high importance scores are recommended as input features for species classification under varying light conditions.According to the classification accuracies through field survey data at multiple spatial scales,it was found that species classification within an extensive forest area using airborne hyperspectral data under various illuminations can be successfully carried out using the effective radiometric consistency process and feature selection strategy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32101489)Forestry Science and Technology Innovation Program of Hunan Province(Grant No.XLK202101-2)Science and Technology Innovation Platform and Talent Program of Hunan Province(Grant Nos.2023RC3164,2021NK1007)。
文摘Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.
基金supported by the National Natural Science Foundation of China(31971578)the Scientific Research Fund of Changsha Science and Technology Bureau(kq2004095)+2 种基金the National Bureau to Combat Desertification,State Forestry Administration of China(101-9899)the Training Fund of Young Professors from Hunan Provincial Education Department(90102-7070220090001)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220707)。
文摘Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic development.Understanding the spatial-temporal distribution and variation trend of eco-environmental quality is essential for environmental protection and ecological balance.The remote sensing ecological index(RSEI)can quickly and objectively quantify eco-environmental quality and has been extensively utilized in regional ecological environment assessment.In this paper,Moderate Resolution Imaging Spectroradiometer(MODIS)images during the growing period(July-September)from 2000 to 2020 were obtained from the Google Earth Engine(GEE)platform to calculate the RSEI in the three northern regions of China(the Three-North region).The Theil-Sen median trend method combined with the Mann-Kendall test was used to analyze the spatial-temporal variation trend of eco-environmental quality,and the Hurst exponent and the Theil-Sen median trend were superimposed to predict the future evolution trend of eco-environmental quality.In addition,ten variables from two categories of natural and anthropogenic factors were analyzed to determine the drivers of the spatial differentiation of eco-environmental quality by the geographical detector.The results showed that from 2000 to 2020,the RSEI in the Three-North region exhibited obvious regional characteristics:the RSEI values in Northwest China were generally between 0.2 and 0.4;the RSEI values in North China gradually increased from north to south,ranging from 0.2 to 0.8;and the RSEI values in Northeast China were mostly above 0.6.The average RSEI value in the Three-North region increased at an average growth rate of 0.0016/a,showing the spatial distribution characteristics of overall improvement and local degradation in eco-environmental quality,of which the areas with improved,basically stable and degraded eco-environmental quality accounted for 65.39%,26.82%and 7.79%of the total study area,respectively.The Hurst exponent of the RSEI ranged from 0.20 to 0.76 and the future trend of eco-environmental quality was generally consistent with the trend over the past 21 years.However,the areas exhibiting an improvement trend in eco-environmental quality mainly had weak persistence,and there was a possibility of degradation in eco-environmental quality without strengthening ecological protection.Average relative humidity,accumulated precipitation and land use type were the dominant factors driving the spatial distribution of eco-environmental quality in the Three-North region,and two-factor interaction also had a greater influence on eco-environmental quality than single factors.The explanatory power of meteorological factors on the spatial distribution of eco-environmental quality was stronger than that of topographic factors.The effect of anthropogenic factors(such as population density and land use type)on eco-environmental quality gradually increased over time.This study can serve as a reference to protect the ecological environment in arid and semi-arid regions.
文摘Plant diseases have become a challenging threat in the agricultural field.Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early.However,deep learning entails extensive data for training,and it may be challenging to collect plant datasets.Even though plant datasets can be collected,they may be uneven in quantity.As a result,the problem of classification model overfitting arises.This study targets this issue and proposes an auxiliary classifier GAN(small-ACGAN)model based on a small number of datasets to extend the available data.First,after comparing various attention mechanisms,this paper chose to add the lightweight Coordinate Attention(CA)to the generator module of Auxiliary Classifier GANs(ACGAN)to improve the image quality.Then,a gradient penalty mechanism was added to the loss function to improve the training stability of the model.Experiments show that the proposed method can best improve the recognition accuracy of the classifier with the doubled dataset.On AlexNet,the accuracy was increased by 11.2%.In addition,small-ACGAN outperformed the other three GANs used in the experiment.Moreover,the experimental accuracy,precision,recall,and F1 scores of the five convolutional neural network(CNN)classifiers on the enhanced dataset improved by an average of 3.74%,3.48%,3.74%,and 3.80%compared to the original dataset.Furthermore,the accuracy of MobileNetV3 reached 97.9%,which fully demonstrated the feasibility of this approach.The general experimental results indicate that the method proposed in this paper provides a new dataset expansion method for effectively improving the identification accuracy and can play an essential role in expanding the dataset of the sparse number of plant diseases.
基金We acknowledge grants from the National Key R&D Program of China(Project Number:2020YFE0200800)National Science and Technology Major Project of China's High Resolution Earth Observation System(Project Number:21-Y20B01-9001-19/22-1).
文摘Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks.
基金funded by the National Key Research and Development Program of China[Grant Number 2021YFD2201205]the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Genomics research of Populus deltoides,an important timber species that is widely planted worldwide,is an important part of poplar breeding.Currently,the nuclear and chloroplast genome of P.deltoides have been sequenced,but its mitochondrial genome(mitogenome)has not been reported.To further explore the evolution and phylogeny of P.deltoides,the mitogenome of P.deltoides I-69 was assembled using reads from Nanopore and Illumina sequencing platforms and found to consist of 802,637 bp and three circular chromosomes(336,205,280,841,and 185,591 bp)containing 58 genes(34 protein-coding genes,21 tRNA genes,and 3 rRNA genes).RNA analysis in combination with several species showed signifi cantly fewer RNA editingsites in the mitogenomes of poplar and other angiosperms than in gymnosperms.Sequence transfer analysis showed extensive mitogenome rearrangements in Populus species,and with evolution from lower to higher plants,tRNA transfer from chloroplasts to mitochondria became increasingly frequent.In a phylogenetic analysis,the evolutionary status of P.deltoides was determined,and the section Populus was supported.Our results based on the fi rst report of a multicircular conformation of the Populus mitogenome provide a basis for further study of the evolution and genetics of P.deltoides and other Populus species and for breeding programs.
基金financially supported by Key Project of State Key R&D Program,China (2022YFF1100200)the Program for Science&Technology Innovation Platform of Hunan Province (2019TP102)+3 种基金Natural Science Foundation of Hunan Province (2021JJ31075,2019JJ50984)Natural Science Foundation of Changsha City (kq2014275)Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology (CX20200699,CX202102067)Postgraduate Scientific Research Innovation Project of Hunan Province (CX20201018,CX20210899,CX20220701 and CX20220720)。
文摘Dietary parboiled rice(PR)has a low risk of disease,but little is known about the contribution of PR to the prevention of hyperlipidemia.The potential role and underlying mechanisms of PR in hyperlipidemia were evaluated in this study.Male C57BL/6J mice were fed with a normal diet,high-fat diet(HFD)containing refined rice(HFDRR)or PR(HFDPR).It was found that PR intervention improved lipid accumulation in mice.Transcriptomic data analysis revealed that 27 genes were up-regulated(mostly involved in lipid breakdown)and 86 genes were down-regulated(mostly involved in inflammatory responses)in the HFDPR group compared to the HFDRR group.And 15 differentially expressed genes(DEGs)were validated by quantitative real-time PCR(RT-qPCR),while protein interaction network showed that protein tyrosine phosphatase receptor type C(PTPRC)has a central role.The gut microbiota of mice was also altered after different dietary treatments,with higher ratio of Firmicutes and Bacteroidetes,increased abundances of Ruminococcaceae,Lachnospiraceae,Christensenellaceae,Porphyromonadaceae,Rikenellaceae and Prevotellaceae,and decreased abundances of Lactobacillaceae,Peptostreptococcaceae,Erysipelotrichaceae and Actinobacteria in the HFDRR group.In addition,it was observed that PPAR signaling pathway may act as a bridge between DEGs and differential gut microbiota.These results suggested that PR can prevent hyperlipidemia by modulating liver genes and gut microbiota.
基金supported by the National High Tech Development Project of Chinathe 863 Program (Grant Nos.2007AA02Z329)the National Natural Science Foundation of China (Grant Nos.20060213024).
文摘The pattern of codon usage in the chloroplast genome of Populus alba was investigated. Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plot were conducted to analyze synonymous codon usage. The results of correspondence analysis showed that the distribution of genes on the major axis was significantly correlated with the frequency of use of G+C in synonymously variable third position of sense codon (GC3S), (r=0.349), and the positions of genes on the axis 2 and axis 3 were significantly correlated with CAI (r=-0.348, p〈0.01 and r=0.602, p〈0.01). The ENc for most genes was similar to that for the expected ENc based on the GC3s, but several genes with low ENc values were lying below the expected curve. All of these data indicated that codon usage was dominated by a mutational bias in chloroplast gcnome ofP. alba. The selection in nature for translational efficiency only played a minor role in shaping codon usage in the chloroplast genome ofP alba.
基金supported in part by the Hi-Tech Re-search and Development Program of China ("863" Program) (No. 2007AA02Z329)the National Natural Science Foundation of China (Grant No. 20060213024)
文摘Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants. The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon usage. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.
基金Funded by the Nanjing Institute of Geography and Limnology, CAS, No.S260018 The Chinese Meteoro-logical Administration, No.ccsf2006-31
文摘The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.
基金supported by the National Natural Science Foundation of China(31460107)Siberian Crane Wetland Project-ChinaConstruction Office of Poyang Lake Water Control Project of Jiangxi Province(KT201401)
文摘Using total counts in simultaneous annual surveys, we monitored the population size and spatial distribution of oriental white storks (Ciconia boyciana) wintering in Poyang Lake between 1998 and 2011. Results showed that Poyang Lake wetland is an important wintering ground for oriental white storks, with an annual average population number of 2 305+326. The population sizes in 2004, 2005, 2010, and 2011 were higher than the highest-ever estimate of its global population. In 2005, we recorded 3 789 individuals, which was the maximum population number within the period of 1998-2011. The storks inhabited 52 lakes, with the greatest distance between these lakes being 180.3 km. The storks presented a clustered distribution pattern in the Poyang Lake wetland, irrespective of the number of individuals or occurrence frequencies. Shahu, Dahuchi, Banghu, and Hanchihu were most frequently used lakes and had the largest annual average numbers of storks. There was a significant positive correlation between occurrence frequency and annual average number of storks in the lakes. Most of the lakes important for storks were covered by existing nature reserves, though some lakes outside the reserves were also frequently used. About 64.9%+ 5.5% of the storks were found in nature reserves. In addition, the storks more frequently used and clumped in significantly larger flocks in lakes within nature reserves than lakes outside.
基金supported by the National Key Research and Development Programme of China(Grant No.2016YFC0500406)the Chinese Academy of Sciences Key Strategic Programme,Water Ecological Security Assessment,the Major Research Strategy for Middle and Lower Yangtze River(Grant No.ZDRWZS-2017-3-3)the National Natural Science Foundation of China(Grant Nos.31661143027,31670424,31700330)
文摘Background:Migration theory suggests,and some empirical studies show, that in order to compete for the best breeding sites and increase reproductive success,long-distance avian migrants tend to adopt a time minimization strategy during spring migration, resulting in shorter duration spring migration compared to that in autumn.Methods:Using GPS/GSM transmitters,we tracked the full migrations of 11 Greater White-fronted Geese (Anser albifrons) between southeast China and the Russian Arctic,to reveal the migration timing and routes of the East Asian population, and compare the difference in duration between spring and autumn migration of this population.Results:We found that migration in spring (79 ± 12 days) took more than twice as long to cover the same distance as in autumn (35 ±7 days).This difference in migration duration was mainly determined by significantly more time spent in spring (59±16 days) than in autumn (23± 6days) at significantly more stopover sites. Conclusions:We suggest that these geese, thought to be partial capital breeders, spent almost three quarters of total migration time at spring stopover sites to acquire energy stores for ultimate investment in reproduction, although we cannot reject the hypothesis that timing of the spring thaw also contributed to stopover duration.In autumn,they acquired necessary energy stores on the breeding grounds sufficient to reach Northeast China staging areas almost without stop, which reduced stopover times in autumn and resulted in the faster autumn migration than spring.
基金financially supported by the National Key Research and Development Plan(2017YFD0600106)the National Natural Science Foundation of China under Grant31470497+1 种基金Project 2013-007,Jilin Provincial Forestry Departmentsupported by the Program for New Century Excellent Talents in University(NCET-12-0726)
文摘Forest fires caused by natural forces or human activities are one of the major natural risks in Northeast China.The incidence and spatial distribution of these fires vary over time and across the forested areas in Jilin Province,Northeast China.In this study,the incidence and distribution of 6519 forest fires from 1969 to 2013 in the province were investigated.The results indicated that the spatiotemporal distribution of the burnt forest area and the fire frequency varied significantly by month,year,and region.Fire occurrence displayed notable temporal patterns in the years after forest fire prevention measures were strictly implemented by the provincial government.Generally,forest fires in Jilin occurred in months when stubble and straw were burned and human activities were intense during traditional Chinese festivals.Baishan city,Jilin city,and Yanbian were defined as fire-prone regions for their high fire frequency.Yanbian had the highest frequency,and the fires tended to be large with the highest burned area per fire.Yanbian should thus be listed as the key target area by the fire management agency in Jilin Province for better fire prevention.
基金supported by the National Key Research and Development Program of China(2016YFC0501603)the National Natural Science Foundation of China(Nos.41671025+2 种基金413904614123085241471029)
文摘Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was 499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and 0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model’s ability in simulating the interception of individual rainfall events were suggested.
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.
文摘Long-term monthly precipitation data from 1960 to 2008 at 17 rain stations are analyzed to explore spatio-temporal variation of the seasonal and annual precipitation in the Poyang Lake basin, China, using anomaly analysis, simple linear regressive technique, Mann-Kendall trend test and Continuous Wavelet Transform. The results indicate that: (1) increasing precipitation trend is observed in summer and winter, while decreasing precipitation trend is identified in spring and autumn, and the above mentioned precipitation trends are not statistically significant;(2) changing trend of the areal average annual precipitation is non-significantly increasing, and increasing trend happens in almost the whole basin except in western and south-eastern small parts;(3) the spatial distribution of the seasonal and annual precipitation anomalies between 1991-2008 and 1960-2008 is similar to that of seasonal and annual precipitation trend during 1960-2008;(4) three main time-frequency distributions are observed in annual precipitation series during 1960- 2008, and they are 18 - 26 years, 8 - 14 years and 2 - 8 years, respectively;accordingly, there are three main periods in annual precipitation series, and they are 11-year, 22-year and 5-year respectively. This result will be helpful for further research on availability, scientific management and assessment of the water resources of the Poyang Lake basin.
基金The study was supported by National Natural Science Foundation of China[Grant No.U20A20118]College Students’Innovative Entrepreneurial Training Plan Program of Shannxi Province[Grant No.S202010712295].
文摘Darwin’s finches are the most classic case of evolution.Early studies on the evolution of this species were mainly based on morphology.Until now,the mitochondrial genome of Geospiza magnirostris has been sequenced and the study explored the characteristics of the complete genome of G.magnirostris and verified the evolutionary position of it.The 13 PCGs initiated by ATN codons.The stop codons of three PCGs(ND2,COX3 and ND4)were incomplete,with only T-or TA-replacing complete form TAA or TAG.All the tRNA genes expressed a typical cloverleaf secondary structure,except for tRNA^(Ser1)(AGY),whose dihydrouridine(DHU)arm was lack and instead with a simple loop.In the sequence of the control region of G.magnirostris,we found six simple repeat tandem sequences with a total length of 42 bp.Two characteristic conserved overlapping junction(ATGCTAA)and(CAAGAAAG)were observed as reported for eight selected Passeriformes birds.A special conserved overlapping junction(ATCTTACC)involved in mitochondrial transcription termination was found between tRNA^(Tyr) and COX1 in G.magnirostris’s control region.Four most frequently used amino acids in G.magnirostris’s PCGs were Leu1(CUN),Ile,Thr,Ala.The codon usage of G.magnirostris was relatively average,and there was no particular bias.The ratio Ka/Ks results showed that G.magnirostris receives less natural selection pressure.The phylogenetic relationships and cluster analysis of relative codon usage showed that G.magnirostris and Thraupis episcopus clustered in one branch.The phylogenetic position of G.magnirostris was consistent with the traditional taxonomic of Thraupis.The results supported the conclusion that G.magnirostris belongs to the morphological classification of the family Thraupidae.
文摘The Tarim Basin,Xinjiang,China,a region important to the walnut industry,is affected by frequent heavy dust storms.Dust,including micro-particles(diameter<10μm),covers the surface of the walnut tree,thereby changing the surface-atmosphere interface microenvironment,which,in turn,influences the exterior and interior structure of the tree.Dust storms occur in spring and summer,during the flowering period of walnut,which is the key developmental stage leading to fruit formation.This study investigated the effects of dust on female flowers,male flowers,and the pollination of walnut.The morphological changes in the stigma during pollination were recorded.Stigma receptivity was studied via the benzidine–H2O2 method.Morphological features of the female floral organs and pollen were investigated using scanning electron microscopy.Pollen germination and pollen tube growth were examined by fluorescence microscopy.The results showed that dust had a significant inhibitory effect on male and female flowers,resulting in decreased catkin growth,reduced pollen viability(pollen viability was 20.13%),blocked pollen apertures,a reduced pollen germination rate on the stigma,and increased time needed for pollen tube appearance.Dust also had an inhibitory effect on stigma length and receptivity of female walnut flowers,with the length of the walnut stigma being reduced by 0.25~0.80 mm during the flowering process.In addition,there was decreased stigma mucus,resulting in stigma atrophy,decreased amount of pollen on the stigma,weakened stigma receptivity,and accelerated drying of female flowers.In the Tarim Basin,walnut flowering occurd at the same time as dust storms do,which had a negative impact on the floral organ,flowering and pollination of walnut.
文摘Understanding species morphological variation across geographical ranges can serve as a first step for germplasm collection and the conservation of genetic resources.The morphological variability of Haematostaphis barteri Hook.F.(Anacardiaceae)in Benin(West Africa)was studied,using 11 traits related to panicles,fruits,leaves and leaflets.A total of 1,485 panicles,1,485 fruits,990 leaves and 4,950 leaflets were sampled.It was found that the sample provenance and site topography have a significant influence on the morphological traits.The discriminating morphological traits were the length of the panicles,the number of fruits per panicle,the length and width of fruits,the mass of the fresh fruit pulp mass,the length of leaves and petioles,the number of leaflets per leaf,length and width of leaflets.On the basis of these traits,four different morphotypes of H.barteri were identified,with however a small intra and inter group variability.The morphotype from sites established on the tops and the high slopes of hill produced larger and heavier fruits with higher pulp mass.This morphotype could be of interest for future varietal selection programs for the species in Benin.
文摘The development of the mining industry has led to the appearance in many parts of the world of vast technogenic territories from which toxic heavy metals enter the environment and food chains.Physical,chemical,and biological methods of cleaning industrial land due to technological complexity and hi gh cost are relatively little used on a large scale.Natural forest overgrowth of mining sites and the removal of heavy metals by woody plants can be an effective form of recovery.Therefore,the study of this process is of significant scientific and practical interest.The analysis of the annual growth in height and width of the annual rings of the stem of Scots pine(Pinus sylvestris L.) in 2004-2019 was made on the territory of the Uchalinsky mining and processing plant(South Ural,Russia) contaminated with heavy metals.Relatively hi gh concentrations of copper and zinc were found in soils,roots,bark,young shoots,comparable to exceeding the maximum allowable concentrations.Despite the spatial uniformity of the heavy metal content in the stands,the tree samples significantly differed in terms of annual growth.Results suggest that the lack of nutrients and not stress from exposure to heavy metals is the main reason for relatively low growth rates on slopes of industrial wastes.It was confirmed by studying the annual growth in height of the undergrowth in habitats with different soil cover conservation.The data prove the relatively high potential of Scots pine for the natural recovery of industrial lands polluted with heavy metals by mining enterprises.
基金supported by the National Natural Science Foundation of China (Grant No.42101403)the National Key Researchand Development Program of China (Grant No.2017YFD0600404)。
文摘Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive process based on multi-flightline airborne hyperspectral data is lacking over large,forested areas influenced by both the effects of bidirectional reflectance distribution function(BRDF)and cloud shadow contamination.In this study,hyperspectral data were collected over the Mengjiagang Forest Farm in Northeast China in the summer of 2017 using the Chinese Academy of Forestry's LiDAR,CCD,and hyperspectral systems(CAF-LiCHy).After BRDF correction and cloud shadow detection processing,a tree species classification workflow was developed for sunlit and cloud-shaded forest areas with input features of minimum noise fraction reduced bands,spectral vegetation indices,and texture information.Results indicate that BRDF-corrected sunlit hyperspectral data can provide a stable and high classification accuracy based on representative training data.Cloud-shaded pixels also have good spectral separability for species classification.The red-edge spectral information and ratio-based spectral indices with high importance scores are recommended as input features for species classification under varying light conditions.According to the classification accuracies through field survey data at multiple spatial scales,it was found that species classification within an extensive forest area using airborne hyperspectral data under various illuminations can be successfully carried out using the effective radiometric consistency process and feature selection strategy.