期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
1
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N S co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
The Preparation of Nanosized Pd/ZSM-23 Bifunctional Catalysts for n-Hexadecane Hydroisomerization by Employing PHMB as the Growth Modifi er
2
作者 Jiazheng Sun Shuxiang Xiong +2 位作者 Qiong Wu Wei Wang Wei Wu 《Transactions of Tianjin University》 EI CAS 2023年第6期482-491,共10页
The development of highly effective metal-zeolite bifunctional catalysts for the hydroisomerization of n-alkanes is a paramount strategy to produce second-generation biofuels with high quality.In this study,polyhexame... The development of highly effective metal-zeolite bifunctional catalysts for the hydroisomerization of n-alkanes is a paramount strategy to produce second-generation biofuels with high quality.In this study,polyhexamethylene biguanide hydrochloride(PHMB)is precisely added to the initial gel to synthesize nanosized ZSM-23 zeolites(Z23-x PH).Due to orientation adsorption and steric hindrance effects of PHMB,each sample of Z23-x PH demonstrates enhanced mesoporosity in comparison with the conventional Z23-C zeolite.Furthermore,the Bronsted acid density of the Z23-x PH samples is also signifi cantly reduced due to a reduction in the distribution of framework Al at T2-T5 sites.The corresponding Pd/23-C and Pd/Z23-x PH bifunctional catalysts with 0.5 wt%Pd loading for n-hexadecane hydroisomerization are prepared by incorporating ZSM-23 zeolites as acid supports.According to the catalytic test results,the suitable addition of PHMB can effectively promote the iso-hexadecane yield.The Pd/Z23-2PH catalyst with an n_(PHMB)/n(_Si)molar ratio of 0.002 demonstrates the highest maximum iso-hexadecane yield of 74.1%at an n-hexadecane conversion of 88.3%.Therefore,the employment of PHMB has provided a simple route for the development of highly effective Pd/ZSM-23 catalysts for n-alkane hydroisomerization. 展开更多
关键词 n-Hexadecane hydroisomerization Nanosized ZSM-23 zeolite PHMB Bifunctional catalyst
下载PDF
Rational construction and decoration of Li_(5)Cr_(7)Ti_(6)O_(25)@Cnanofibers as stable lithium storage materials 被引量:5
3
作者 Ting-Ting Wei Panpan Peng +3 位作者 Yu-Rui Ji Yan-Rong Zhu Ting-Feng Yi Ying Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期400-410,I0011,共12页
Li_(5)Cr_(7)Ti_(6)O_(25) is regarded as a promising anode material for Li-ion batteries(LIBs)because of its low cost and high theoretical capacity.However,the inherently poor conductivity significantly limits the enha... Li_(5)Cr_(7)Ti_(6)O_(25) is regarded as a promising anode material for Li-ion batteries(LIBs)because of its low cost and high theoretical capacity.However,the inherently poor conductivity significantly limits the enhancement of its rate capability and cycling stability,especially at high current densities.In this work,we construct one-dimensional Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers by electrospinning method to enhance the kinetic,which realizes high cycling stability.Carbon coating enhances the structure stability,insertion/extraction reversibility of Li-ions and electrochemical reaction activity,and facilitates the transfer of Li-ions.Benefited from the unique architecture and component,the Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows an excellent rate capability with a reversible de-lithiation capacity of 370.8,290.6,269.2,254.3 and 244.9 m Ah g^(-1) at 200,300,500,800 and 1000 m A g^(-1),respectively.Even at a higher current density of 1 A g^(-1),Li_(5)Cr_(7)Ti_(6)O_(25)/C(6.6 wt%)nanofiber shows high cycling stability with an initial de-lithiation capacity of 237.8 m Ah g^(-1) and a capacity retention rate of about 84%after 500 cycles.The density functional theory calculation result confirms that the introduction of carbon on the surface of Li_(5)Cr_(7)Ti_(6)O_(25) changes the total density of states of Li_(5)Cr_(7)Ti_(6)O_(25),and thus improves electronic conductivity of the composite,resulting in a good electrochemical performance of Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers.Li_(5)Cr_(7)Ti_(6)O_(25)/C nanofibers indicate a great potential as an anode material for the next generation of high-performance LIBs. 展开更多
关键词 Lithium-ion battery Anode Li_(5)Cr_(7)Ti_(6)O_(25) Electrospinning Nanofibers
下载PDF
Synthesis of TiO_2/g-C_3N_4 nanocomposites with phosphate–oxygen functional bridges for improved photocatalytic activity 被引量:7
4
作者 Chong Liu Fazal Raziq +3 位作者 Zhijun Li Yang Qu Amir Zada Liqiang Jing 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第6期1072-1078,共7页
One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface ... One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities.However,the role of interface contact is often neglected,and is rarely reported to date.Hence,it is possible to further enhance the photocatalytic activity of g‐C3N4‐based nanocomposite by improving the interfacial connection.Herein,phosphate-oxygen(P-O)bridged TiO2/g‐C3N4nanocomposites were successfully synthesized using a simple wet chemical method,and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2reduction were investigated.The photocatalytic activity of g‐C3N4was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2,especially with P-O bridged TiO2.Atmosphere‐controlled steady‐state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g‐C3N4upon coupling with the P-O bridged TiO2,resulting from the built P-O bridges between TiO2and g‐C3N4so as to promote effective transfer of excited electrons from g‐C3N4to TiO2.This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g‐C3N4nanocomposite,which exhibited three‐time photocatalytic activity enhancement for2,4‐dichlorophenol degradation and CO2reduction compared with bare g‐C3N4.Furthermore,radical‐trapping experiments revealed that the·OH species formed as hole‐modulated direct intermediates dominated the photocatalytic degradation of2,4‐dichlorophenol.This work provides a feasible strategy for the design and synthesis of high‐performance g‐C3N4‐based nanocomposite photocatalysts for pollutant degradation and CO2reduction. 展开更多
关键词 TiO2/graphitic carbon nitride NANOCOMPOSITE Phosphate–oxygen bridge Charge transfer and separation PHOTOCATALYSIS Carbon dioxide conversion
下载PDF
Electrooxidation of Nitric Oxide at a Glass Carbon Electrode Modified with Functionalized Single-walled Carbon Nanotube 被引量:1
5
作者 LI Li SHI Ke-ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第6期1025-1030,共6页
The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochem... The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode. 展开更多
关键词 Single-walled carbon nanotube Modified electrode Nitric oxide Electrocatalytic oxidation Cyclic voltammetry
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
6
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Hollow Ni Mo-based nitride heterojunction with super-hydrophilic/aerophobic surface for efficient urea-assisted hydrogen production
7
作者 Yuying Fan Ying Gu +3 位作者 Dongxu Wang Yanqing Jiao Aiping Wu Chungui Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期428-439,I0009,共13页
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim... Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis. 展开更多
关键词 Hydrogen evolution Transition metal nitrides Hollow heterojunctions Urea electrooxidation Super hydrophilic/aerophobic
下载PDF
Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction 被引量:13
8
作者 Qiuyu Chen Sijia Li +4 位作者 Hongyi Xu Guofeng Wang Yang Qu Peifen Zhu Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期514-523,共10页
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th... A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction. 展开更多
关键词 Co-MOF g-C3N4 nanosheets Charge separation Visible-light photoactivity Photocatalytic CO2 conversion
下载PDF
Recyclable adsorbent of BiFeO_3/Carbon for purifying industrial dye wastewater via photocatalytic reproducible 被引量:9
9
作者 Shuang Jiao Yiming Zhao +2 位作者 Chensha Li Binsong Wang Yang Qu 《Green Energy & Environment》 SCIE CSCD 2019年第1期66-74,共9页
It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic r... It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH ? 2–12, which can imply its universal utilization. The prepared BiFeO_3/Carbon nanocomposites have also displayed excellent capacities(over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO_3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO_3/Carbon can be a suitable material used in treating industrial dye wastewater potentially. 展开更多
关键词 Reproducible ADSORBENT BiFeO3/Carbon nanocomposites Photocatalysis PURIFYING INDUSTRIAL dye wastewater Pseudo-second-order model
下载PDF
Construction of 2D Zn‐MOF/BiVO_(4)S‐scheme heterojunction for efficient photocatalytic CO_(2) conversion under visible light irradiation 被引量:6
10
作者 Zhenlong Zhao Ji Bian +6 位作者 Lina Zhao Hongjun Wu Shuai Xu Lei Sun Zhijun Li Ziqing Zhang Liqiang Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1331-1340,共10页
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ... The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production. 展开更多
关键词 BiVO4 nanosheet 2D zinc porphyrin‐based MOFs modification S‐scheme heterojunction Visible light catalysis CO_(2) conversion
下载PDF
Synthesis of Ni^2+cation modified TS-1 molecular sieve nanosheets as effective photocatalysts for alcohol oxidation and pollutant degradation 被引量:4
11
作者 Imran Khan Xiaoyu Chu +3 位作者 Yanduo Liu Salman Khan Linlu Bai Liqiang Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1589-1602,共14页
lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synt... lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation. 展开更多
关键词 TS-1 nanosheet Photocatalytic alcohol oxidation Charge separation Ni species as electron capturer O2 activation
下载PDF
Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO_(2)@CeO_(2)Nanosheets 被引量:4
12
作者 Ting feng Yi Lingna Shi +3 位作者 Xiao Han Fanfan Wang Yanrong Zhu Ying Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期586-595,共10页
In this work,the hierarchical CoNiO_(2)@CeO_(2)nanosheet composites were successfully prepared by a one-step hydrothermal process with a subsequent annealing process for the first time.The CeO_(2)nanoparticles success... In this work,the hierarchical CoNiO_(2)@CeO_(2)nanosheet composites were successfully prepared by a one-step hydrothermal process with a subsequent annealing process for the first time.The CeO_(2)nanoparticles successfully deposit on the surface of CoNiO_(2)nanosheet,and benefit the improvement of electrical contact between CoNiO_(2)and CeO_(2).CeO_(2)modification improve the reversibility of insertion/extraction of Li-ions and electrochemical reaction activity,and promotes the transport of Li-ions.Benefited of the unique architecture and component,the CoNiO_(2)@CeO_(2)nanosheet composites show high-reversible capacities,excellent cycling stability and good rate capability.The CoNiO_(2)@CeO_(2)(5.0 wt%)shows a charge/discharge capacity of 867.1/843.2 m Ah g^(-1)after 600 cycles at 1 A g^(-1),but the pristine CoNiO_(2)@CeO_(2)nanosheet only delivers a charge/discharge capacity of 516.9/517.6 m Ah g^(-1)after 500 cycles.The first-principles calculation reveals that valid interfaces between CeO_(2)and NiCoO_(2)can be formed,and the formation process of the interfaces is exothermic.The strong interfacial interaction resulting in an excellent structure stability and thus a cycling stability of the CoNiO_(2)@CeO_(2)material.This work provides an effective strategy to develop highperformance anode materials for advanced a lithium-ion battery,and the CoNiO_(2)@CeO_(2)nanosheet shows a sizeable potential as an anode material for next generation of high-energy Li-ion batteries. 展开更多
关键词 anode material CoNiO_(2)@CeO_(2)nanosheet first principle calculation interface stability Li-ion battery
下载PDF
Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation 被引量:2
13
作者 靳磊 付宏刚 +1 位作者 谢颖 于海涛 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期647-651,共5页
The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indica... The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties. 展开更多
关键词 field emission density functional theory carbon nanotube alkali metal
下载PDF
Synthesis, Crystal Structure and Theoretical Studies of (E)-1-((9-(2-(2-methoxyethoxy)ethyl)-9H-carbazol-3-yl)methylene)thiosemicarbazide 被引量:2
14
作者 刘艳秋 张志文 +3 位作者 李丹丹 周虹屏 田玉鹏 吴杰颖 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第5期659-666,共8页
A novel thiosemicarbazide derivative, (E)-1-(9-(2-(2-methoxyethoxy)ethyl)-9H-carbazol-3-yl) methylene)-thiosemicarbazide (CMT), was synthesized and structurally characterized by IR, 1H-NMR, EI-MS and single... A novel thiosemicarbazide derivative, (E)-1-(9-(2-(2-methoxyethoxy)ethyl)-9H-carbazol-3-yl) methylene)-thiosemicarbazide (CMT), was synthesized and structurally characterized by IR, 1H-NMR, EI-MS and single-crystal X-ray diffraction. It crystallizes in monoclinic, space group P21/c with a = 14.769(5), b = 8.279(5), c = 17.166(5) , β = 114.391(5)°, V = 1911.6(14) 3, Z = 4, F(000) = 784, Dc = 1.287 g/m3, Mr = 370.47, μ = 0.190 mm-1, the final R = 0.0390 and wR = 0.1358 for 1446 observed reflections with Ⅰ 〉 2σ(Ⅰ). The UV-vis absorption spectra of CMT were explained based on quantum chemical calculations, using time dependent density functional theory (TD-DFT) at the B3LYP/6-31G (d) level. 展开更多
关键词 crystal structure thiosemicarbanzone carbazole theoretical study UV-Visible spectroscopy
下载PDF
Photogenerated carrier transfer mechanism and photocatalysis properties of TiO_2 sensitized by Zn(Ⅱ) phthalocyanine 被引量:1
15
作者 李丽 辛柏福 《Journal of Central South University》 SCIE EI CAS 2010年第2期218-222,共5页
The Zn(Ⅱ) phthalocyanine sensitized TiO2(ZnPc-TiO2) nanoparticles were prepared by hydrothermal method via impregnation with ZnPc.The as-prepared photocatalysts were characterized by X-ray diffractometry(XRD) and dif... The Zn(Ⅱ) phthalocyanine sensitized TiO2(ZnPc-TiO2) nanoparticles were prepared by hydrothermal method via impregnation with ZnPc.The as-prepared photocatalysts were characterized by X-ray diffractometry(XRD) and diffuse reflectance spectroscopy(DRS),and the surface photovoltage spectroscopy(SPS) and photocatalytic degradation of rhodamine B(RhB) were studied under illuminating.The experimental results indicate that TiO2 sensitized by ZnPc extends its absorption band into the visible region effectively,and the sensitized TiO2 has higher activity than TiO2(Degussa P-25) under the simulated solar light and the visible light.Based on the DRS and SPS results,the mechanism about the photogenerated carrier transfer between TiO2 and ZnPc is proposed.At a lower ZnPc content(≤0.20 μmol/g),ZnPc monomer acts as the electron donor,which provides the photoinduced electrons to the conduction band of TiO2.These photoinduced electrons can transfer to molecular oxygen(O2),leading to the formation of active species,such as superoxide/hydroxide radicals and singlet oxygen,which is beneficial to the photocatalytic reaction.While at a higher ZnPc content(>0.20 μmol/g),the formation of ZnPc dimer results in the decrease of photocatalytic activities of ZnPc-TiO2 photocatalyst. 展开更多
关键词 Zn( phthalocyanine (ZnPc) TiO2 nanoparticles PHOTOCATALYST SENSITIZATION PHOTODEGRADATION MECHANISM
下载PDF
Naphthalene-containing polyimides:Synthesis, characterization and photovoltaic properties of novel donor-acceptor dyes used in solar cell 被引量:1
16
作者 牛海军 穆景山 +4 位作者 张密林 罗俊 罗培辉 白续铎 王文 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期587-593,共7页
Novel linear and star branched triphenylamine-containing aromatic imides were designed and synthesized by the condensation between amine-substituted triphenylamine and naphthalene-1, 4, 5, 8-tetra-carboxylic dianhydri... Novel linear and star branched triphenylamine-containing aromatic imides were designed and synthesized by the condensation between amine-substituted triphenylamine and naphthalene-1, 4, 5, 8-tetra-carboxylic dianhydride in order to investigate the influence of topological structure on the photophysical performance. The polyimides were characterized by elementary analysis and FTIR measurements. Thermogravimetric analysis (TGA) shows that the onset temperatures of decomposition (Td) for 5% mass loss range from 371 to 445 ℃. UV-Vis spectrum, quantum chemical calculation and cyclic voltammetry (CV) were used to obtain the dependence of energy levels on the function of structures. The introduction of triphenylamine group changes the energy level of the entire dye system. The dye-sensitized solar cells (DSSCs) prepared by using the dyes have a strong photoelectric current response in visible light region of 400-600 nm. 展开更多
关键词 NAPHTHALENE DIIMIDE triphenylamine sensitized solar cell electrochemical properties
下载PDF
Synthesis, Crystal Structure, Theoretical Studies and Sensitive Response toward Fe^(3+) of a Novel Tripyrazole Derivative Ligand 被引量:1
17
作者 杜威 祝英忠 +3 位作者 王慧 赵雪松 吴杰颖 田玉鹏 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第11期1573-1579,共7页
A novel pyrazole derivative ligand, BTA(BTA = bis-(4-ethoxy-phenyl)-[4-(tripyrazol-1-yl-methyl)-phenyl]-amine), was synthesized and fully characterized by 1H-NMR, MALDI-TOF-MS spectra and single-crystal X-ray di... A novel pyrazole derivative ligand, BTA(BTA = bis-(4-ethoxy-phenyl)-[4-(tripyrazol-1-yl-methyl)-phenyl]-amine), was synthesized and fully characterized by 1H-NMR, MALDI-TOF-MS spectra and single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P1, with a = 11.827(1), b = 16.000(2), c = 16.527(2)A, α = 108.510(1), β = 91.116(5), γ = 101.734(1)°, V = 2894.5(6) A3, Z = 1, Dc = 1.262 g/m^3, F(000) = 1162, Μr = 545.63, μ = 0.083 mm-1, the final R = 0.0728 and w R = 0.2213 for 7541 observed reflections with I 〉 2(I). The structural analysis revealed that three pyrazole units are attached to the same carbon atom connected with bis-(4-ethoxy-phenyl)-phenyl-amine group. UV-vis spectral features of the ligand in various solutions were explained by time dependent density functional theory(TD-DFT). It was also found that the ligand(BTA) exhibits an exclusively selective and sensitive response toward Fe3+ using UV-vis spectroscopic method. 展开更多
关键词 crystal structure PYRAZOLE cation sensor TD-DFT Fe^3+
下载PDF
Controlled Growth Morphology of Porous Nanocrystal Iron Oxide by Electrodeposition
18
作者 LI Li SHI Ke-ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第5期595-599,共5页
Fe(Ⅱ) was deposited into the bottom of the mesopores of highly ordered large caged cubic mesoporous silica by electrodeposition. And the deposited Fe mesoporous silica thin film was treated by 1%---4% HF to remove ... Fe(Ⅱ) was deposited into the bottom of the mesopores of highly ordered large caged cubic mesoporous silica by electrodeposition. And the deposited Fe mesoporous silica thin film was treated by 1%---4% HF to remove the SiO2 template and then calcined. It was found that nanowire bundles, dendritic plates of porous iron oxide, dense parallel backbones of porous iron oxide were obtained at -1.4-- -1.6 V and 0.08--0.1 mol/L electrolyte concentration after calcinations; the dendritic pattern of porous iron oxide film templated by the SBA-16 film was obtained in macrostructure at a higher absolute value of cathode potential(-1.7-- -1.8 V) and a lower electrolyte concentration(0.02-0.05 mol/L), the dendritic pattern of porous iron oxide film could copy the microstructure of SBA-16 film; Fe(II) nanowires grew and formed in one dimension(1D) and two-dimension(2D) electrocrystallization at a potential of-l.6-- -1.7 V and an electrolyte concentration of 0.05 mol/L, and the shape of the ID or 2D crystalline iron oxide nanowires calcined was similar to the original shape of the SBA-16 channels. The desired morphology and size of porous nanocrystal iron oxide can be obtained by adjusting the applied potential value and electrolyte concentration, and all kinds of morphologies of porous nanostructure crystal iron oxide can be prepared. 展开更多
关键词 ELECTROCRYSTALLIZATION DEPOSITION Porous iron oxide Morohology
下载PDF
Improving the stability,lithium diffusion dynamics,and specific capacity of SrLi_(2)Ti_(6)O_(14)via ZrO_(2)coating
19
作者 Hong-Li Ding Hai-Tao Yu +4 位作者 Xiao-dong Wang Chen-Feng Guo Bing Zheng Ying Xie Ting-Feng Yi 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期53-65,共13页
SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermo... SrLi_(2)Ti_(6)O_(14)(SLTO)coated with different amount of ZrO_(2)was successfully prepared.The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity.Furthermore,ZrO_(2)coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film.As a result,the redox polarization was reduced,and the reversibility of the electrochemical reaction was enhanced.Particularly,SLTO-ZrO_(2)-2 sample delivers a high initial lithiation capacity of 283.6 mA h g^(-1),and the values maintain at 251.7,228.0,207.4,175.3,and 147.7 mA h g^(-1)at the current densities of 0.13,0.26,0.54,1.31,and 2.62 A g^(-1),respectively.Our experiment also confirmed that SLTO materials coated with ZrO_(2)are suitable for high power density applications,and the lithiation specific energy efficiency of SLTO-ZrO_(2)-2 is 200%as high as that of pure SLTO at a power density of 1257 W kg^(-1). 展开更多
关键词 SrLi_(2)Ti_(6)O_(14) ZrO_(2)coating Structural stability Anode material Electrochemical performance
下载PDF
Preparation and Characterization of Chitosan Microsphere Loading Bovine Serum Albumin
20
作者 孙庆申 付宏刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期459-464,共6页
To optimize the preparation process of chitosan microspheres and study its loading capacity, chitosan microsphere was prepared by crosslinking with glutaraldehyde, and bovine serum albumin (BSA) was absorbed onto ch... To optimize the preparation process of chitosan microspheres and study its loading capacity, chitosan microsphere was prepared by crosslinking with glutaraldehyde, and bovine serum albumin (BSA) was absorbed onto chitosan microsphere. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FITR), TA instruments and zeta potentiometer analyzer were used to characterize the parameters with respect to size, thermal characters, morphology, and zeta potential of the microspheres. The loading capability and in vitro release tests were carried out. The results showed that chitosan microsphere with particle size less than 10 μm and positively charged (+25.97±0.56 mV) can be obtained under the aldehyde group to amino group ratio at 1:1. A loading capacity of BSA at 28.63±0.15 g/100 g with corresponding loading efficiency at 72.01±1.44% was obtained for chitosan microsphere. In vitro test revealed a burst release followed by sustained-release profile. 展开更多
关键词 chitosan microsphere bovine serum albumin CROSSLINKING
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部