Developing efficient electrocatalysts for hydrogen evolution reaction(HER) is of great importance in contemporary water electrolysis technology. Here, a novel hierarchically sea urchin-like electrocatalyst(Mo_(4)O_(11...Developing efficient electrocatalysts for hydrogen evolution reaction(HER) is of great importance in contemporary water electrolysis technology. Here, a novel hierarchically sea urchin-like electrocatalyst(Mo_(4)O_(11)-MoS_(2)-VO_(2)) is synthesized by hydrothermal deposition and post-annealing strategy. The optimized electrocatalyst behaves as a high active hydrogen evolution electrode in 0.5 mol/L H_(2)SO_(4). This electrode needs overpotential of only 43 m V to achieve 10 m A/cm^(2)with a Tafel slope of 37 m V/dec and maintains its catalytic activity for at least 36 h. Better than most previously reported non-noble metal electrocatalysts anchored on carbon cloth. It is worth mentioning that the hierarchical sea urchin-like structure promotes the redistribution of electrons and provides more catalytic active sites. This strategy shows a way for the construction of inexpensive non-noble metal electrocatalysts in the future.展开更多
基金supported by the National Natural Science Foundation of China (No. 51802177)Independent Cultivation Program of Innovation Team of Ji nan City (No. 2019GXRC011)Introduction and Cultivation Plan of Young Innovative Talents in Colleges and Universities of Shandong Province,Shandong Provincial Natural Science Foundation (No. ZR^(2)020ME052)。
文摘Developing efficient electrocatalysts for hydrogen evolution reaction(HER) is of great importance in contemporary water electrolysis technology. Here, a novel hierarchically sea urchin-like electrocatalyst(Mo_(4)O_(11)-MoS_(2)-VO_(2)) is synthesized by hydrothermal deposition and post-annealing strategy. The optimized electrocatalyst behaves as a high active hydrogen evolution electrode in 0.5 mol/L H_(2)SO_(4). This electrode needs overpotential of only 43 m V to achieve 10 m A/cm^(2)with a Tafel slope of 37 m V/dec and maintains its catalytic activity for at least 36 h. Better than most previously reported non-noble metal electrocatalysts anchored on carbon cloth. It is worth mentioning that the hierarchical sea urchin-like structure promotes the redistribution of electrons and provides more catalytic active sites. This strategy shows a way for the construction of inexpensive non-noble metal electrocatalysts in the future.