期刊文献+
共找到290篇文章
< 1 2 15 >
每页显示 20 50 100
A purely green approach to low-cost mass production of zeolitic imidazolate frameworks 被引量:1
1
作者 Hai Li Wan Chen +6 位作者 Bei Liu Mingke Yang Zixuan Huang Changyu Sun Chun Deng Dapeng Cao Guangjin Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期775-784,共10页
Although zeolitic imidazolate frameworks(ZIFs)have bright prospects in wide fields like gas storage/separation,catalysis and medicine,etc.,their large-scale applications are bottlenecked by the absence of their low-co... Although zeolitic imidazolate frameworks(ZIFs)have bright prospects in wide fields like gas storage/separation,catalysis and medicine,etc.,their large-scale applications are bottlenecked by the absence of their low-cost commercial production technique.Here,we report an uncon ventional method suitable for environmentally friendly and low-cost mass-production of ZIFs.In this method,taking the synthesis of ZIF-8 as an example,ZnO was used instead of Zn(NO_(3))_(2) in traditional solvent synthesis methods and CO_(2) was introduced to dissolve ZnO in aqueous solution of 2-methylimidazole(HMeim)and form water soluble salt([ZnMeim]^(+)[MeimCOO]^(-))at room temperature.Then,by removing CO_(2) through heating or vacuuming,Meim-ions are produced and instantaneously assemble with[ZnMeim]^(+)s to generate ZIF-8 without any by product.Due to the absence of strong acid anions(such as NO^(-)_(3) and Cl^(-) et al.)in solution,the washing of filter cake required in the conventional approaches could be omitted and the filtrate containing only water and HMeim could be reused completely.This method is really green as no waste gas or liquid generates because CO_(2) and water could be recycled perfectly.It overcomes almost all bottlenecks occurred in commercial production of ZIF-8 when using traditional methods.A pilot plant was established for mass-production of ZIF-8 and hundreds kilograms of ZIF-8 was produced,which indicates that the new method is not only environmentally friendly but also low cost and commercial accessibility.It is expected that the new method would open an avenue for commercial applications of ZIFs. 展开更多
关键词 Zeolitic imidazolate frameworks Mass production Metal oxide Carbon dioxide Environmentally friendly
下载PDF
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds 被引量:1
2
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
下载PDF
Synthesis of spherical nano-ZSM-5 zeolite with intergranular mesoporous for alkylation of ethylbenzene with ethanol to produce m-diethylbenzene
3
作者 Siyue Wang Jinhong Li +5 位作者 Qingxin Xu Shengjie Song Yu'ni Jiang Lidong Chen Xin Shi Weiguo Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期298-309,共12页
Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to devel... Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to develop efficient and stable heterogeneous catalysts.Here,the spherical nano-ZSM-5 zeolite with abundant intergranular mesoporous is synthesized by the seed-mediated growth method for alkylation of EB with ethanol to produce m-DEB.The results show that the spherical nano-ZSM-5 zeolite exhibits better stability and higher alkylation activity at a lower temperature than those of commercial micropore ZSM-5.And then,the spherical nano-ZSM-5 is further modified by La_(2)O_(3) through acid treatment followed by immersion method.The acid treatment causes nano-ZSM-5 to exhibit the increased pore size but decreased the acid sites,and subsequent La_(2)O_(3) loading reintroduces the weak acid sites.As a result,the HNO_(3)-La_(2)O_(3)-modified catalyst exhibits a slight increase in EB conversion and DEB yield in comparison with unmodified one,and meanwhile,it still maintains high m-DEB selectivity.The catalyst after acid treatment achieves higher catalytic stability besides maintaining the high alkylation activity of EB with ethanol.The present study on the spherical nano-HZSM-5 zeolite and its modification catalyst with excellent alkylation ability provides new insights into the production of mDEB. 展开更多
关键词 Zeolite Modification Alkylation reaction m-diethylbenzene Catalyst FIXED-BED
下载PDF
Direct observation of ordered-disordered structural transition of MoS_(2)-confined ionic liquids
4
作者 Yumiao Lu Weilu Ding +4 位作者 Kun Li Yanlei Wang Bobo Cao Ruirui He Hongyan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期126-132,共7页
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs... Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications. 展开更多
关键词 Ionic liquids(ILs) Surface-confined ILs Structural transition Thermal stability Interfacial forces
下载PDF
Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots
5
作者 Peng Jiang Christian Sonne +2 位作者 Wangliang Li Fengqi You Siming You 《Engineering》 SCIE EI CAS CSCD 2024年第9期202-210,共9页
Intelligent chatbots powered by large language models(LLMs)have recently been sweeping the world,with potential for a wide variety of industrial applications.Global frontier technology companies are feverishly partici... Intelligent chatbots powered by large language models(LLMs)have recently been sweeping the world,with potential for a wide variety of industrial applications.Global frontier technology companies are feverishly participating in LLM-powered chatbot design and development,providing several alternatives beyond the famous ChatGPT.However,training,fine-tuning,and updating such intelligent chatbots consume substantial amounts of electricity,resulting in significant carbon emissions.The research and development of all intelligent LLMs and software,hardware manufacturing(e.g.,graphics processing units and supercomputers),related data/operations management,and material recycling supporting chatbot services are associated with carbon emissions to varying extents.Attention should therefore be paid to the entire life-cycle energy and carbon footprints of LLM-powered intelligent chatbots in both the present and future in order to mitigate their climate change impact.In this work,we clarify and highlight the energy consumption and carbon emission implications of eight main phases throughout the life cycle of the development of such intelligent chatbots.Based on a life-cycle and interaction analysis of these phases,we propose a system-level solution with three strategic pathways to optimize the management of this industry and mitigate the related footprints.While anticipating the enormous potential of this advanced technology and its products,we make an appeal for a rethinking of the mitigation pathways and strategies of the life-cycle energy usage and carbon emissions of the LLM-powered intelligent chatbot industry and a reshaping of their energy and environmental implications at this early stage of development. 展开更多
关键词 Large language models Intelligent chatbots Carbon emissions Energy and environmental footprints Life-cycle assessment Global cooperation
下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
6
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
下载PDF
Synthesis of NaY zeolite from a submolten depolymerized perlite:Alkalinity effect and crystallization kinetics
7
作者 Yanli Qu Peng Dong +4 位作者 Li Yang Yuanyuan Yue Haoliang Wang Jingcai Cheng Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期130-138,共9页
NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O... NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture. 展开更多
关键词 NaY zeolite Submolten salt depolymerized perlite ALKALINITY Crystallization kinetics
下载PDF
Current collectors’ effects on the electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) suspension electrodes for lithium slurry battery
8
作者 Linshan Peng Yufei Ren +3 位作者 Zhaoqiang Yin Zhitong Wang Xiangkun Wu Lan Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1306-1313,共8页
Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable sl... Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell. 展开更多
关键词 Semi-solid flow battery Slurry electrode Current collector Electronic resistance Carbon coated Al
下载PDF
A Facile Li_(2)TiO_(3) Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides
9
作者 Naifang Hu Yuan Yang +5 位作者 Lin Li Yuhan Zhang Zhiwei Hu Lan Zhang Jun Ma Guanglei Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期41-48,共8页
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat... Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries. 展开更多
关键词 full concentration gradient lithium-rich layered oxides structure stability surface modification
下载PDF
A novel process for the recovery of iron,titanium,and vanadium from vanadium-bearing titanomagnetite:sodium modification–direct reduction coupled process 被引量:12
10
作者 Yi-min Zhang Ling-yun Yi +5 位作者 Li-na Wang De-sheng Chen Wei-jing Wang Ya-hui Liu Hong-xin Zhao Tao Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期504-511,共8页
A sodium modification–direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium- bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium ... A sodium modification–direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium- bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium vanadate and the transformation of iron oxides to metallic iron were accomplished in a single-step high-temperature process. The increase in roasting temperature favors the reduction of iron oxides but disfavors the oxidation of vanadium oxides. The recoveries of vanadium, iron, and titanium reached 84.52%, 89.37%, and 95.59%, respectively. Moreover, the acid decomposition efficiency of titanium slag reached 96.45%. Compared with traditional processes, the novel process provides several advantages, including a shorter flow, a lower energy consumption, and a higher utilization efficiency of vanadium-bearing titanomagnetite resources. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Energy utilization IRON Leaching Magnetic separation Metal recovery Metallic compounds Oxides SLAGS SODIUM TITANIUM VANADIUM
下载PDF
An efficient green route for hexamethylene-1,6-diisocyanate synthesis by thermal decomposition of hexamethylene-1,6-dicarbamate over Co3O4/ZSM-5 catalyst: An indirect utilization of CO2 被引量:4
11
作者 Muhammad Ammar Yan Cao +3 位作者 Peng He Liguo Wang Jiaqiang Chen Huiquan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1760-1770,共11页
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i... The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts. 展开更多
关键词 Hexamethylene-1 6-dicarbamate (HDC)Hexamethylene-1 6-diisocyanate (HDI) Thermal decomposition Co3O4/ZSM-5 Heterogeneous catalyst
下载PDF
Recent progress of green sorbents-based technologies for low concentration CO_(2) capture 被引量:3
12
作者 Yuanyue Zhao Yihui Dong +3 位作者 Yandong Guo Feng Huo Fang Yan Hongyan He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期113-125,共13页
The increased concentration of CO_(2) due to continuous breathing and no discharge of human beings in the manned closed space,like spacecraft and submarines,can be a threat to health and safety.Effective removal of lo... The increased concentration of CO_(2) due to continuous breathing and no discharge of human beings in the manned closed space,like spacecraft and submarines,can be a threat to health and safety.Effective removal of low concentration CO_(2) from the manned closed space is essential to meet the requirements of long-term space or deep-sea exploration,which is an international frontier and trend.Ionic liquids(ILs),as a widespread and green solvent,already showed its excellent performance on CO_(2) capture and absorption,indicating its potential application in low concentration CO_(2) capture.In this review,we first summarized the current methods and strategies for direct capture from low concentration CO_(2) in both the atmosphere and manned closed spaces.Then,the multi-scale simulation methods of CO_(2) capture by ionic liquids are described in detail,including screening ionic liquids by COSMO-RS methods,capture mechanism by density functional theory and molecular dynamics simulation,and absorption process by computational fluid dynamics simulation.Lastly,some typical IL-based green technologies for low concentration CO_(2) capture,such as functionalized ILs,co-solvent systems with ILs,and supported materials based on ILs,are introduced,and analyzed the subtle possibility in manned closed spaces.Finally,we look forward to the technology and development of low concentration CO_(2) capture,which can meet the needs of human survival in closed space and proposed that supported materials with ionic liquids have great advantages and infinite possibilities in the vital area. 展开更多
关键词 Low concentration CO_(2)capture Ionic liquids Manned closed spaces
下载PDF
Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C_(3)N_(4)-H_(2) catalyst prepared by ultrasonic assisted impregnation-deposition method 被引量:3
13
作者 Huanhuan Yang Liguo Wang +5 位作者 Shuang Xu Yan Cao Peng He Jiaqiang Chen Zheng Zheng Huiquan Li 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1361-1376,共16页
In this study,nanosheet g-C_(3)N_(4)-H_(2) was prepared by thermal exfoliation of bulk g-C_(3)N_(4) under hydrogen.A series of Ru/g-C_(3)N_(4)-H_(2) catalysts with Ru species supported on the nanosheet g-C_(3)N_(4)-H_... In this study,nanosheet g-C_(3)N_(4)-H_(2) was prepared by thermal exfoliation of bulk g-C_(3)N_(4) under hydrogen.A series of Ru/g-C_(3)N_(4)-H_(2) catalysts with Ru species supported on the nanosheet g-C_(3)N_(4)-H_(2) were synthesized via ultrasonic assisted impregnation-deposition method.Ultrafine Ru nanoparticles(<2 nm)were highly dispersed on nanosheet g-C_(3)N_(4)-H_(2).Strong interaction due to Ru-Nx coordination facilitated the uniform distribution of Ru species.Meanwhile,the involvement of surface basicity derived from abundant nitrogen sites was favourable for enhancing the selective hydrogenation performance of bi-benzene ring,i.e.,almost complete 4,40-diaminodiphenylmethane(MDA)conversion and>99%4,40-diaminodicyclohexylmethane selectivity,corresponding to a reaction activity of 35.7 mol_(MDA) mol_(Ru)^(-1) h^(-1).Moreover,the reaction activity of catalyst in the fifth run was 36.5 mol_(MDA) mol_(Ru)^(-1) h^(-1),which was comparable with that of the fresh one.The computational results showed that g-C_(3)N_(4) as support was favorable for adsorption and dissociation of H_(2) molecules.Moreover,the substrate scope can be successfully expanded to a variety of other aromatic diamines.Therefore,this work provides an efficient and green catalyst system for selective hydrogenation of aromatic diamines. 展开更多
关键词 Nanosheet carbon nitride Ultrafine Ru species Selective hydrogenation Aromatic diamine Alicyclic diamine
下载PDF
Process design and economic analysis of methacrylic acid extraction for three organic solvents 被引量:2
14
作者 Jie Li Zhijian Peng +2 位作者 Chunshan Li Ping Li Rafiqul Gani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期2909-2916,共8页
In this work,a techno-economic study for the solvent based extraction of methacrylic acid from an aqueous solution is presented.The involved phase equilibrium calculations in process design are verified by measured ex... In this work,a techno-economic study for the solvent based extraction of methacrylic acid from an aqueous solution is presented.The involved phase equilibrium calculations in process design are verified by measured experimental data.First,experiments are conducted with different solvent candidates to measure LLE(liquid–liquid equilibrium)data and to establish the effects of extraction temperature and dosage of solvent.Next,the binary interaction parameters for the UNIQUAC model to be used for equilibrium calculations are fine-tuned with measured data.Then,a process for the solvent based extraction of methacrylic acid recovery is designed and verified through simulation with the regressed UNIQUAC model parameters.The optimal configuration of the process flowsheet is determined by minimizing the total annualized cost.Among the three solvent candidates considered-cyclohexane,hexane and toluene-the highest efficiency and the lowest total annualized cost is found with toluene as the solvent. 展开更多
关键词 EXTRACTION Methacrylic ACID OPTIMIZATION TECHNO-ECONOMIC analysis
下载PDF
Increasing the greenness of an organic acid through deep eutectic solvation and further polymerisation 被引量:1
15
作者 Liteng Li Xiaofang Li +5 位作者 Susu Zhang Hongyuan Yan Xiaoqiang Qiao Hongyan He Tao Zhu Baokun Tang 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期840-853,共14页
Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bo... Acrylic acid(AA)is an important and widely used industrial chemical,but its high toxicity renders its use incompatible with the concept of green development.By leveraging its terminal carboxyl group and unsaturated bond,we designed and explored a new strategy to increase the greenness of AA via its eutectic melting using a quaternary ammonium salt(choline chloride)to form a deep eutectic solvent(DES),followed by polymerisation of the DES to form a polymer(poly(DES)).The greenness of AA,DES,and poly(DES)was evaluated via an in vitro test using MGC80-3 cells and an in vivo test using Kunming mice.The toxicity improved from Grade 2(moderately toxic)for AA to Grade 1(slightly toxic)for DESs and Grade 0(non-toxic)for poly(DES)in the in vitro test.Moreover,the poly(DES)s showed a lower toxicity in mice than the DESs in the in vivo test.Thus,greenness enhancement was successfully achieved,with the greenness following the order AA<DES<poly(DES).Furthermore,the mechanisms underlying the change in toxicity were explored through microscopy and flow cytometry,which revealed that the DES can permeate the MGC80-3 cell membrane during the G_(0)/G_(1) phase to adversely affect DNA synthesis in the S phase,but the poly(DES)cannot.Finally,the green poly(DES),which showed good adsorption properties and flexible functionality,was successfully applied as a carrier or excipient of drugs.Through the novel strategy reported herein,greenness enhancement and the broadening of the application scope of a toxic organic acid were achieved,making such acids applicable for green development. 展开更多
关键词 Greenness Deep eutectic solvent Polymer TOXICITY Application
下载PDF
Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction 被引量:1
16
作者 Shan Ni Hongnan Qu +9 位作者 Huifang Xing Zihao Xu Xiangyang Zhu Menglei Yuan Meng Rong Li Wang Jiemiao Yu Yanqing Li Liangrong Yang Huizhou Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期320-328,共9页
Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transitio... Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transition-metal electrocatalysts still suffer from low activity and durability on account of poor interfacial reaction kinetics.In this work,a facile solid-state synthesis strategy is developed to construct transition-metal sulfides heterostructures(denoted as MS_(2)/NiS_(2),M=Mo or W)for boosting OER electrocatalysis.As a result,MoS2/NiS2 and WS2/NiS2 show lower overpotentials of 300 mV and 320 mV to achieve the current density of 10 mA·cm^(-2),and smaller Tafel slopes of 60 mV.dec^(-1) and 83 mV.dec^(-1)in 1 mol·L^(-1) KOH,respectively,in comparison with the single MoS2,WS2,NiS2,as well as even the benchmark RuO2.The experiments reveal that the designed heterostructures have strong electronic interactions and spontaneously develop a built-in electric field at the heterointerface with uneven charge distribution based on the difference of band structures,which promote interfacial charge transfer,improve absorptivity of OH-,and modulate the energy level more comparable to the OER.Thus,the designed transition-metal sulfides heterostructures exhibit a remarkably high electrocatalytic activity for OER.This study provides a simple strategy to manipulate the heterostructure interface via an energy level engineering method for OER and can be extended to fabricate other heterostructures for various energy-related applications. 展开更多
关键词 Oxygen evolution reaction Transition-metal sulfides heterostructures HETEROINTERFACE Built-in electric field
下载PDF
Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production 被引量:1
17
作者 Ran An Shengxin Chen +5 位作者 Shun Hou Yuting Zhu Chunhu Li Xinbao Zhu Ruixia Liu Weizhong An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第12期103-114,共12页
A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy cons... A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process. 展开更多
关键词 Propylene oxide Reactive distillation Heat integration Propylene glycol monomethyl ether Process simulation
下载PDF
Reconstruction and recovery of anatase TiO_(2) from spent selective catalytic reduction catalyst by Na OH hydrothermal method 被引量:2
18
作者 Jinlong Liu Chenye Wang +4 位作者 Xingrui Wang Chen Zhao Huiquan Li Ganyu Zhu Jianbo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期53-60,共8页
The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalys... The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst. 展开更多
关键词 TiO_(2)reconstruction Anatase TiO_(2)recovery Pore properties Spent V_(2)O_(5)-WO_(3)/TiO_(2)catalyst
下载PDF
Occurrence,leaching behavior,and detoxification of heavy metal Cr in coal gasification slag 被引量:2
19
作者 Jiangshan Qu Jianbo Zhang +7 位作者 Huiquan Li Shaopeng Li Da Shi Ruiqi Chang Wenfen Wu Ganyu Zhu Chennian Yang Chenye Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期11-19,共9页
Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical he... Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical heavy metal Cr in CGS is investigated.The leaching behavior of Cr under different conditions is studied in detail.Acid leaching-selective oxidation-coprecipitation method is proposed based on the characteristics of Cr in CGS.The detoxification of Cr in CGS is realized,and the detoxification mechanism is clarified.Results show that Cr is highly enriched in CGS.The speciation of Cr is mainly residual fraction(74.47%-86.12%),which is combined with amorphous aluminosilicate.Cr^(3+)and Cr^(6+)account for 90.93%-94.82%and 5.18%-9.07%of total Cr,respectively.High acid concentration and high liquid-solid ratio are beneficial to destroy the lattice structure of amorphous aluminosilicate,thus improving the leaching efficiency of Cr,which can reach 97.93%under the optimal conditions.Acid leaching-selective oxidation-coprecipitation method can realize the detoxification of Cr in CGS.Under the optimal conditions,the removal rates of Fe^(3+)and Cr^(3+)in the leaching solution are 80.99%-84.79%and 70.58%-71.69%,respectively,while the loss rate of Al^(3+)is only 1.10%-3.35%.Detoxification slag exists in the form of Fe-Cr coprecipitation(Fe_(1-x)Cr_xOOH),which can be used for smelting.The detoxification acid leaching solution can be used to prepare inorganic polymer composite coagulant poly-aluminum chloride(PAC).This study can provide theoretical and data guidance for detoxification of heavy metal Cr in CGS and achieve resource utilization of coal gasification solid waste. 展开更多
关键词 Coal gasification slag Heavy metal DISTRIBUTIONS LEACHING DETOXIFICATION PRECIPITATION
下载PDF
Mechanism of CO_(2)reduction in carbonylation reaction promoted by ionic liquid additives:A computational and experimental study 被引量:2
20
作者 Kai-Lun Bi Bao-Hua Xu +2 位作者 Wei-Lu Ding Li-Jun Han Lin Ji 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期296-307,共12页
The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to C... The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to CO is positively correlated with the efficiency of both hydroesterification and hydroformylation,which is found facilitated in the presence of chloride additives with a decreasing order of BmimCl~B3MimCl>BmmimCl~LiCl.Taking the hydroesterification with MeOH as a representative example,BmimCl bearing C-H functionality at the C^(2)site of the cation assists the reduction of CO_(2)to CO as a hydrogen donor medium,with the anion and cation acting in a synergistic fashion.Subsequent insertion of CO_(2)into the formed Ru-H bond with the assistance of chloride anion produces the Ru-COOH species,which ultimately accelerates the activation of CO_(2). 展开更多
关键词 CO_(2)transformation CARBONYLATION Ionic liquids Synergistic effect Theoretical analysis
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部