To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen recep...To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor α, thyroid hormone receptor α, retinoic acid receptor ct and retinoid X receptor α) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.展开更多
The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In ...The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In this study, we measured the concentrations of two urinary metabolites of 1-nitropyrene(1NP), a nitrated polycyclic aromatic hydrocarbon that has been suggested as a molecular marker of diesel particulate matter. These two metabolites, 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were determined in urine samples(10 m L) from a small group of workers who were occupationally-exposed to vehicle exhaust in Trujillo, Peru, before and after their workshifts. Workshift exposures to1 NP, as well as PM_(2.5), 2-nitropyrene and 2-nitrofluoranthene, were also measured.Exposures to 1NP were similar in all studied workers, averaging 105 ± 57.9 pg/m^3(±standard deviation). Median urinary concentrations of the average of the pre- and post-exposure samples for 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were found to be 3.9 and 2.3 pg metabolite/mg creatinine, respectively in the group of occupationally-exposed subjects(n = 17) studied. A direct relationship between workshift exposure to 1NP and urinary 1NP metabolites concentrations was not observed. However,the 1NP exposures and the creatinine-corrected urinary concentrations of the hydroxynitropyrene metabolites in these Peruvian traffic workers were similar to occupationally-exposed taxi drivers in Shenyang, China, and were higher than biomarker levels in office workers from Trujillo without occupational exposure to vehicle exhaust.This study provides further evidence that urinary metabolites of 1NP are associated with exposure to DE and may serve as a useful exposure biomarker.展开更多
基金supported in part by the Environment Research and Technology Development Fund (C-0802) of the Ministry of the Environment,Japanthe Grant-in-Aid for Young Scientists (B) 20760362 from the Ministry of Education,Culture,Sports,Science and Technology,Japan
文摘To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor α, thyroid hormone receptor α, retinoic acid receptor ct and retinoid X receptor α) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.
基金supported in part by grant number R21-ES014917 from the National Institute of Environmental Health Sciences (NIEHS), NIH USA
文摘The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In this study, we measured the concentrations of two urinary metabolites of 1-nitropyrene(1NP), a nitrated polycyclic aromatic hydrocarbon that has been suggested as a molecular marker of diesel particulate matter. These two metabolites, 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were determined in urine samples(10 m L) from a small group of workers who were occupationally-exposed to vehicle exhaust in Trujillo, Peru, before and after their workshifts. Workshift exposures to1 NP, as well as PM_(2.5), 2-nitropyrene and 2-nitrofluoranthene, were also measured.Exposures to 1NP were similar in all studied workers, averaging 105 ± 57.9 pg/m^3(±standard deviation). Median urinary concentrations of the average of the pre- and post-exposure samples for 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were found to be 3.9 and 2.3 pg metabolite/mg creatinine, respectively in the group of occupationally-exposed subjects(n = 17) studied. A direct relationship between workshift exposure to 1NP and urinary 1NP metabolites concentrations was not observed. However,the 1NP exposures and the creatinine-corrected urinary concentrations of the hydroxynitropyrene metabolites in these Peruvian traffic workers were similar to occupationally-exposed taxi drivers in Shenyang, China, and were higher than biomarker levels in office workers from Trujillo without occupational exposure to vehicle exhaust.This study provides further evidence that urinary metabolites of 1NP are associated with exposure to DE and may serve as a useful exposure biomarker.