期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Advances in cathode materials for Li-O_(2)batteries
1
作者 Pengcheng Xing Patrick Sanglier +3 位作者 Xikun Zhang Jing Li Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期126-167,I0004,共43页
Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and ... Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and poor cycle stability,greatly limit their practical application.This review provides a comprehensive account of the development of Li-O_(2)batteries,elucidates the current discharge/charge mechanism,and highlights both the advantages and bottlenecks of this technology.In particular,recent research progress on various cathode materials,such as carbon-based materials,noble metals,and non-noble metals,for Li-O_(2)batteries is deeply reviewed,emphasizing the impact of design strategies,material structures,chemical compositions,and microphysical parameters on oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)kinetics,as well as discharge products and overall battery performance.This review will also shed light on future research directions for oxygen electrode catalysts and material construction to facilitate the development of Li-O_(2)batteries with maximized electrochemical performance. 展开更多
关键词 Li-O_(2)batteries Mechanism CATHODE OER ORR
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
2
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high lumines... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C3N4)have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Effects of surface chlorine atoms on charge distribution and reaction barriers for photocatalytic CO_(2)reduction
3
作者 Wendong Zhang Wenjun Ma +6 位作者 Yuerui Ma Peng Chen Qingqing Ye Yi Wang Zhongwei Jiang Yingqing Ou Fan Dong 《Nano Materials Science》 EI CAS CSCD 2024年第2期235-243,共9页
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st... Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst. 展开更多
关键词 Surface chlorine atoms Charge distribution Reaction barriers Photocatalytic CO_(2)reduction Bi_(2)WO_(6)
下载PDF
Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier
4
作者 王守霞 胡执一 +5 位作者 HU Jie QIU Zhiming 李俊丽 GENG Wei SU Baolian 阳晓宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期658-664,共7页
We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr... We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine. 展开更多
关键词 core-shell structure mesoporous silica materials controlled drug release
下载PDF
Selectivity control of photocatalytic CO_(2) reduction over ZnS-based nanocrystals:A comparison study on the role of ionic cocatalysts
5
作者 Hong Pang Fumihiko Ichihara +4 位作者 Xianguang Meng Lijuan Li Yuqi Xiao Wei Zhou Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期391-398,I0009,共9页
Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorga... Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorganic reaction system is investigated.Confined single-atom Ni^(2+),Co^(2+),and Cd^(2+)sites were created via cation-exchange process and enhanced CO_(2)reduction,while Fe^(2+)suppressed the photocatalytic activity for both water and CO_(2)reduction.The modified ZnS:Cu photocatalysts(M/ZnS:Cu)demonstrated tunable product selectivity,with Ni^(2+)and Co^(2+)showing high selectivity for syngas production and Cd^(2+)displaying remarkable formate selectivity.DFT calculations indicated favorable H adsorption free energy on Ni^(2+)and Co^(2+)sites,promoting the hydrogen evolution reaction.The selectivity of CO_(2)reduction products was found to be sensitive to the initial intermediate adsorption states.*COOH formed on Ni^(2+)and Co^(2+)while*OCHO formed on Cd^(2+),favoring the production of CO and HCOOH as the main products,respectively.This work provides valuable insights for developing efficient solar-to-fuel platforms with controlled CO_(2)reduction selectivity. 展开更多
关键词 CO_(2) reduction Photocatalysis Zns Ionic cocatalyst FORMATE Syngas DFT calculations
下载PDF
Effects of Nano-CaCO_(3)Addition on Properties of Corundum-based Dispersive Purging Plugs
6
作者 SU Yuqing ZHU Yening +5 位作者 YU Baisong XI Zijian WEI Juncong TU Junbo ZHANG Houxing WANG Yilong 《China's Refractories》 CAS 2023年第4期28-32,共5页
In order to improve the properties of corundum based dispersive purging plugs,dispersive purging plug specimens were prepared using tabular corundum(1-0.15 and≤0.15 mm)as the aggregates,tabular corundum(≤0.044 mm)an... In order to improve the properties of corundum based dispersive purging plugs,dispersive purging plug specimens were prepared using tabular corundum(1-0.15 and≤0.15 mm)as the aggregates,tabular corundum(≤0.044 mm)andα-Al_(2)O_(3)micropowder(d_(50)=0.6μm)as the matrix,Secar 71 cement as the binder,introducing different amounts of nano-CaCO_(3),casting into shapes,and firing at different temperatures(1200 or 1600℃)for 4 h.The effects of the nano-CaCO_(3) extra-addition(0,0.5%,1.0%,1.5%and 2.0%,by mass)on the consistency of the castables as well as the properties and microstructure of the dispersive purging plug specimens were studied.The results show that:(1)with the fixed water addition,the consistency of the corundum castables decreases as the nano-CaCO_(3)addition increases;(2)with the increasing nano-CaCO_(3)addition,the bulk density of the specimens fired at different temperatures for 4 h decreases,the apparent porosity,the cold strength and the hot modulus of rupture all increase,the gas permeability does not change significantly;(3)the specimens fired at 1600℃ for 4 h have obviously better cold comprehensive performance than those fired at 1200℃for 4 h;(4)when the nano-CaCO_(3)addition is 1.5%,the comprehensive performance of the specimen is the optimal. 展开更多
关键词 dispersive purging plugs CONSISTENCY nano-calcium carbonate
下载PDF
Recent advances in nickel-based catalysts in eCO_(2)RR for carbon neutrality
7
作者 Weikang Peng Fengfeng Li +6 位作者 Shuyi Kong Chenxi Guo Haotian Wu Jiacheng Wang Yi Shen Xianguang Meng Mingxi Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期61-91,共31页
The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-... The excessive use of nonrenewable energy has brought about serious greenhouse effect.Converting CO_(2) into high-value-added chemicals is undoubtedly the best choice to solve energy problems.Due to the excellent cost-effectiveness and dramatic catalytic performance,nickel-based catalysts have been considered as the most promising candidates for the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR).In this work,the electrocatalytic reduction mechanism of CO_(2) over Ni-based materials is reviewed.The strategies to improve the eCO_(2)RR performance are emphasized.Moreover,the research on Ni-based materials for syngas generation is briefly summarized.Finally,the prospects of nickel-based materials in the eCO_(2)RR are provided with the hope of improving transition-metal-based electrocatalysts for eCO_(2)RR in the future. 展开更多
关键词 carbon energy carbon neutrality CO_(2)reduction ELECTROCATALYSIS nickel-based materials
下载PDF
A review on ultra-small undoped MoS_(2) as advanced catalysts for renewable fuel production
8
作者 Guoping Liu Lingling Ding +6 位作者 Yuxuan Meng Ahmad Ali Guifu Zuo Xianguang Meng Kun Chang Oi Lun Li Jinhua Ye 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期92-112,共21页
Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-... Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-performance catalysts.The synthesis of ultra-small MoS2 particles(<10 nm)is highly desired in various experimental studies.The ultra-small structure could often lead to a distinct S-Mo coordination state and nonstoichiometric composition in MoSx,minimizing in-plane active sites of the 2D structure and making it probable to regulate the atomic and electronic structure of its intrinsic active sites on a large extent,especially in MoSx clusters.This article summarizes the recent progress of catalysis over ultra-small undoped MoS_(2) particles for renewable fuel production.Through a systematic review of their synthesis,structural,and spectral characteristics,as well as the relationship between their catalytic performance and inherent defects,we aim to provide insights into catalysis over this matrix that may potentially enable advancement in the development of high-performance MoS_(2)-based catalysts for sustainable energy generation in the future. 展开更多
关键词 applications CATALYTIC MoS_(2) structure synthesis
下载PDF
A review on electrocatalytic CO_(2) conversion via C-C and C-N coupling
9
作者 Zhuangzhi Zhang Sijun Li +6 位作者 Zheng Zhang Zhou Chen Hua Wang Xianguang Meng Wenquan Cui Xiwei Qi Jiacheng Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期167-194,共28页
Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of... Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems. 展开更多
关键词 C-C coupling C-N coupling CO_(2) conversion ELECTROCATALYSIS urea synthesis
下载PDF
Construction of TiO_(2)-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation 被引量:7
10
作者 Xiong-feng Zeng Jian-sheng Wang +2 位作者 Ying-na Zhao Wen-li Zhang Meng-huan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期503-510,共8页
We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(... We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control. 展开更多
关键词 pillared structure titanium dioxide-pillared multilayer graphene nanocomposites photocatalysis CIPROFLOXACIN
下载PDF
Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery 被引量:4
11
作者 Chao Li Yingying Wang +7 位作者 Hongyan Li Jing Liu Jianping Song Luca Fusaro Zhi-Yi Hu Yanxin Chen Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期396-404,I0009,共10页
Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving th... Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving the three-dimensional(3 D)highly conductive hierarchically interconnected nanoporous web by threading microporous metal organic framework MIL-68(Al)crystals onto multi-walled carbon nanotubes(MWCNTs).Such 3 D hierarchically nanoporous web(3 D MIL-68(Al)@MWCNTs web)with a very high surface area,a large amount of micropores,electrical conductivity and elasticity strongly traps the soluble polyselenides during the electrochemical reaction and significantly facilitates lithium ion diffusion and electron transportation.Molecular dynamic calculation confirmed the strong affinity of MIL-68(Al)for the adsorption of polyselenides,quite suitable for Li-Se battery.Their hexahedral channels(1.56 nm)are more efficient for the confinement of polyselenides and for the diffusion of electrolytes compared to their smaller triangular channels(0.63 nm).All these excellent characteristics of 3 D MIL-68(Al)@MWCNTs web with suitable confinement of a large amount of selenium and the conductive linkage between MIL-68(Al)host by MWCNTs result in a high capacity of 453 m Ah/g at 0.2 C with 99.5%coulombic efficiency after 200 cycles with significantly improved cycle stability and rate performance.The 3 D MIL-68(Al)@MWCNTs web presents a good performance in Li-Se battery in term of the specific capacity and cycling stability and also in terms of rate performance compared with all the metal-organic framework(MOF)based or MOF derived porous carbons used in Li-Se battery. 展开更多
关键词 Lithium selenium battery Selenium confinement 3D hierarchically nanoporous web Metal-organic framework(MOF) Multi walled carbon nanotubes
下载PDF
Influence of SiO_2 nano-particles on microstructures and properties of Ni-W-P/CeO_2-SiO_2 composites prepared by pulse electrodeposition 被引量:2
12
作者 王军丽 徐瑞东 章俞之 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期839-843,共5页
Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on... Ni-W-P base composites containing CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by pulse co-deposition of Ni,W,P,CeO2 and SiO2 nano-particles.The influence of SiO2 concentrations in bath on microstructures and properties of Ni-W-P/CeO2-SiO2 composites was studied,and the characteristics were assessed by chemical compositions,element distribution,surface morphologies,deposition rate and microhardness.The results indicate that when SiO2 concentration in bath is controlled at 20 g/L,the composites possess the fastest deposition rate,the highest microhardness,compact microstructures,smaller crystallite sizes and uniform distribution of W,P,Ce and Si within Ni-W-P matrix metal.Increasing SiO2 concentration in bath from 10 to 20 g/L leads to the refinement in grain size and the inhomogeneity of microstructures.While when SiO2 concentration is increased to 30 g/L,the crystallite sizes increase again and some bosses with nodulation shape appear on the surface of composites. 展开更多
关键词 二氧化硅纳米粒子 复合材料性能 脉冲电沉积 微观结构 镍基复合材料 可湿性粉剂 二氧化硅含量 沉积速率
下载PDF
Crystallization characteristics of Ni-W-P composite coatings reinforced by CeO_2 and SiO_2 nano-particles 被引量:2
13
作者 徐瑞东 翟大成 章俞之 《Journal of Central South University》 SCIE EI CAS 2014年第12期4424-4431,共8页
Ni-W-P composite coatings reinforced by Ce O2 and Si O2 nano-particles on the surface of common carbon steels, were prepared by double pulse electrodeposition. The crystallization course was characterized by phase str... Ni-W-P composite coatings reinforced by Ce O2 and Si O2 nano-particles on the surface of common carbon steels, were prepared by double pulse electrodeposition. The crystallization course was characterized by phase structures, crystallinity, grain sizes and microstructures. The results indicate that as-deposited composite coating is amorphous. Whereas it turns into the crystalline structure with 98.25% crystallinity, and Ni3 P, Ni2 P and Ni5P2 alloy phases precipitate from structures at 400 °C. Thereafter, Ni2 P and Ni5P2 metastable alloy phases turn into Ni3 P stable alloy phase at 500 °C. The crystallization course of the composite coating has finished when being heat-treated at 700 °C. The average sizes of Ni grains increase with the rise of heat treatment temperature from400 °C to 700 °C. Ce O2 and Si O2 nano-particles deposited into Ni-W-P alloys can delay the crystallization course and habit the growth of alloy phases. 展开更多
关键词 纳米颗粒增强 结晶特性 复合镀层 脉冲电沉积 复合涂层 结晶过程 晶粒尺寸 普通碳素钢
下载PDF
Effect of SrO Content on Structure,Thermal Properties and Chemical Stability of Bi2O3-B2O3-ZnO-SrO Low-melting Glass for Si-Al Alloy Package 被引量:2
14
作者 WU Zhilun ZHANG Ming +2 位作者 ZHANG Chunyan MENG Fancheng LIN Huixing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期368-376,共9页
The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing perfor... The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing performance of BBZSr glass were investigated thoroughly.The experimental results show that the total proportions of [BO3] group and [BO4] group decrease and the vibrations of [BiO3] group and [BiO6] group become weaker with the increase of SrO addition content,suggesting the glass network structure is strengthened owing to the SrO addition.Hence,both the thermal and chemical stability were significantly improved as the SrO content was increased.When the SrO content increased from 0 to 15mol%,the glass transition temperature and softening temperature slightly increased from 380 to 388 ℃ and from 392.7 to 402.2 ℃,respectively,meanwhile the coefficient of thermal expansion also increased from 10.49×10^-6 to 11.16×10^-6/℃ (30-300 ℃).The BBZSr glass with 15mol% SrO exhibited excellent comprehensive properties with low glass transition temperature(384.9 ℃),low softening temperature(400.3 ℃),high coefficient of thermal expansion (11.14×10^-6 ℃,30-300 ℃),good thermal and chemical stability.Besides,the glass had the good wetting behavior and sealing performance for Al-50%Si alloy. 展开更多
关键词 low-melting sealing lead-free glass Bi2O3-B2O3-ZnO-SrO glass silicon-aluminium alloy thermal expansion
下载PDF
Synergistic effects of carbon doping and coating of TiO_(2) with exceptional photocurrent enhancement for high performance H2 production from water splitting 被引量:2
15
作者 Yingying Wang Yan-Xin Chen +7 位作者 Tarek Barakat Tian-Ming Wang Alain Krief Yu-Jia Zeng Marvin Laboureur Luca Fusaro Hong-Gang Liao Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期141-151,共11页
The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boos... The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boost textural,optical and electronic properties and photocurrent of TiO_(2) for high performance visible light H2 production from water splitting has been comprehensively investigated.Carbon doping can significantly increase the thermal stability,thus inhibiting the phase transformation of the Titania material from anatase to rutile while carbon coating can suppress the grain aggregation of TiO_(2).The synergy of carbon doping and coating can not only ensure an enhanced narrowing effect of the electronic band gap of TiO_(2) thus extending the absorption of photocatalysts to the visible regions,but also promote dramatically the separation of electron-hole pairs.Owing to these synergistic effects,the carbon coated and doped TiO_(2) shows much superior photocatalytic activity for both degradation of organics and photocatalytic/photoelectro chemical(PEC)water splitting under simulated sunlight illumination.The photocatalytic activity of obtained materials can reach 5,4 and 2 times higher than that of pristine TiO_(2),carbon doped TiO_(2) and carbon coated TiO_(2),respectively in the degradation of organic pollutants.The carbon coated and doped TiO_(2) materials exhibited more than 37 times and hundreds of times photocurrent enhancement under simulated sunlight and visible light,respectively compared to that of pristine TiO_(2).The present work providing new comprehensive understanding on carbon coating and doping effect could be very helpful for the development of advanced TiO_(2) materials for a large series of applications. 展开更多
关键词 Carbon coating and doping TiO_(2) ONE-POT PEC water splitting Solar light photocatalysis
下载PDF
Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery 被引量:1
16
作者 Hongyan Li Wenda Dong +9 位作者 Chao Li Tarek Barakat Minghui Sun Yingying Wang Liang Wu Lang Wang Lei Xia Zhi-Yi Hu Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期624-636,共13页
Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three ... Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three dimensional ordered hierarchically porous carbon(3D OHPC) materials with micro/meso/macropores are designed and synthesized for Li-Se battery. The porous structure is tuned by following the concept of the generalized Murray’s law to facilitate the mass diffusion and reduce ion transport resistance.The optimized 3D Se/OHPC cathode exhibits a very high 2 nd discharge capacity of 651 m Ah/g and retains 361 m Ah/g after 200 cycles at 0.2 C. Even at a high current rate of 5 C, the battery still shows a discharge capacity as high as 155 m Ah/g. The improved electrochemical performance is attributed to the synergy effect of the interconnected and well-designed micro, meso and macroporosity while shortened ions diffusion pathways of such Murray materials accelerate its ionic and electronic conductivities leading to the enhanced electrochemical reaction. The diffusivity coefficient in Se/OHPC can reach a very high value of 1.3 × 10^(-11)cm^(2)/s, much higher than those in single pore size carbon hosts. Their effective volume expansion accommodation capability and reduced dissolution of polyselenides ensure the high stability of the battery. This work, for the first time, established the clear relationship between textural properties of cathode materials and their performance and demonstrates that the concept of the generalized Murray’s law can be used as efficient guidance for the rational design and synthesis of advanced hierarchically porous materials and the great potential of 3D OHPC materials as a practical high performance cathode material for Li-Se batteries. 展开更多
关键词 3D ordered hierarchically porous carbon(OHPC) Shuttle effect CYCLABILITY High rate capability The generalized Murray’s law Li-Se batteries
下载PDF
Sintering Behavior and Microwave Dielectric Properties of BBSZL Glass-doped ZnTiO_3 Ceramics for LTCC Applications 被引量:1
17
作者 周楚同 YANG Jianyu +2 位作者 LIN Huixing ZHANG Fan 任琳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期282-286,共5页
A novel low temperature co-fired ceramic(LTCC) material was fabricated by zinc titanate(ZnTiO_3) ceramics doped with B_2O_3-BaO-SiO_2-ZnO-Li_2O(BBSZL) glass. The influences of BBSZL glass on wetting behavior, sinterin... A novel low temperature co-fired ceramic(LTCC) material was fabricated by zinc titanate(ZnTiO_3) ceramics doped with B_2O_3-BaO-SiO_2-ZnO-Li_2O(BBSZL) glass. The influences of BBSZL glass on wetting behavior, sintering activation energy, phase composition, microstructure and microwave dielectric properties were investigated. The experimental results show that the sintering temperature of ZnTiO3 ceramics can be reduced from 1 100 to 925 ℃, meanwhile the sintering activation energy is decreased from 465.32 to 390.54 kJ·mol^(-1) by BBSZL glass aid, respectively. Moreover, BBSZL glass can inhibit the high Q×f ZnTiO_3 phase decompose into the low Q×f value Zn_2TiO_4 phase, which is propitious to obtain high Q×f value LTCC material. The ZnTiO_3-BBSZL composite sintered at 925℃ displays the excellent microwave dielectric properties with ε_r of 21.8, Q×f value of 42000 GHz, and τ_f of-75 ppm·℃^(-1). 展开更多
关键词 ZnTiO3 CERAMICS BBSZL GLASS SINTERING behavior DIELECTRIC properties
下载PDF
Shear-thinning behavior of the CaO–SiO2–CaF2–Si3N4 system mold flux and its practical application 被引量:1
18
作者 Ying Xu Zhi-peng Yuan +2 位作者 Li-guang Zhu Yi-hua Han Xing-juan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第10期1096-1103,共8页
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity i... Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si_3N_4 to the CaO–SiO_2–CaF_2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization(DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization. 展开更多
关键词 MOLD flux viscosity SHEAR-THINNING BEHAVIOR non-Newtonian fluid degree of POLYMERIZATION
下载PDF
Effects of B_4C Addition on Properties of Al_2O_3-SiC-Si_3N_4 Castables for Iron Trough 被引量:1
19
作者 WEI Juncong TU Junbo LI Chaoyun 《China's Refractories》 CAS 2010年第3期14-18,共5页
Effects of B4C additions (0,0.2%,0.4%,and 0.6%) on cold physical properties and hot modulus of rupture of Al2O3-SiC-Si3N4 castables for iron trough were investigated. The phase composition and microstructure were an... Effects of B4C additions (0,0.2%,0.4%,and 0.6%) on cold physical properties and hot modulus of rupture of Al2O3-SiC-Si3N4 castables for iron trough were investigated. The phase composition and microstructure were analyzed by XRD and SEM. The results show that bulk density,cold strength,and hot modulus of rupture of the castables first increase and then decrease while apparent porosity first drops and then increases with B4C addition increasing. The optimum addition of B4C is 0.4%. B4C mainly contributes to sintering and antioxidation. Compared with the specimens without B4C,the specimens with B4C have more fibrous O'-SiAlON with larger length-diameter ratio. The growth mechanism of O'-SiAlON crystals is deduced to gas-solid mechanism. 展开更多
关键词 Alumina-silicon carbide-silicon nitride Castables for iron trough Boron carbide O'-SiAlON ANTIOXIDATION
下载PDF
Potential Barrier Behavior of BaTiO3-(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic 被引量:1
20
作者 冷森林 石维 +1 位作者 李国荣 郑嘹赢 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期90-93,共4页
High-Curie-temperature (Tc) lead-free Y-doped 90 mol%BaTiO3-1O mol%(Bi0.5Na0.5 ) TiO3 ceramic with positive temperature coefficient of resistivity (PTCR) is prepared by the conventional solid state reaction in n... High-Curie-temperature (Tc) lead-free Y-doped 90 mol%BaTiO3-1O mol%(Bi0.5Na0.5 ) TiO3 ceramic with positive temperature coefficient of resistivity (PTCR) is prepared by the conventional solid state reaction in nitrogen atmosphere. The PTCR ceramic exhibits a room-temperature resistivity (p25) of ~500Ω.cm and a high PTCR effect (maximum resistivity (ρmax)/minimum resistivity (ρmin)) of ~4.5 orders of magnitude. A capacitance- voltage approach is first employed to calculate the potential barrier ( Ф ) of the grain boundary of PTCR ceramic above Tc. It is found that the potential barrier changes from 0.17 to 0.77eV as the temperature increases from 180 to 220℃, which is very close to the predictions of the Heywang-Jonker model, suggesting that the capacitance-voltage method is valid to estimate the potential barrier of PTCR thermistor ceramics. 展开更多
关键词 Potential Barrier Behavior of BaTiO3 NA Bi
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部