期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier
1
作者 WANG Shouxia HU Zhiyi +5 位作者 HU Jie QIU Zhiming LI Junli GENG Wei SU Baolian YANG Xiaoyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期658-664,共7页
We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr... We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine. 展开更多
关键词 core-shell structure mesoporous silica materials controlled drug release
下载PDF
Advances in cathode materials for Li-O_(2)batteries
2
作者 Pengcheng Xing Patrick Sanglier +3 位作者 Xikun Zhang Jing Li Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期126-167,I0004,共43页
Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and ... Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and poor cycle stability,greatly limit their practical application.This review provides a comprehensive account of the development of Li-O_(2)batteries,elucidates the current discharge/charge mechanism,and highlights both the advantages and bottlenecks of this technology.In particular,recent research progress on various cathode materials,such as carbon-based materials,noble metals,and non-noble metals,for Li-O_(2)batteries is deeply reviewed,emphasizing the impact of design strategies,material structures,chemical compositions,and microphysical parameters on oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)kinetics,as well as discharge products and overall battery performance.This review will also shed light on future research directions for oxygen electrode catalysts and material construction to facilitate the development of Li-O_(2)batteries with maximized electrochemical performance. 展开更多
关键词 Li-O_(2)batteries Mechanism CATHODE OER ORR
下载PDF
Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery 被引量:4
3
作者 Chao Li Yingying Wang +7 位作者 Hongyan Li Jing Liu Jianping Song Luca Fusaro Zhi-Yi Hu Yanxin Chen Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期396-404,I0009,共10页
Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving th... Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving the three-dimensional(3 D)highly conductive hierarchically interconnected nanoporous web by threading microporous metal organic framework MIL-68(Al)crystals onto multi-walled carbon nanotubes(MWCNTs).Such 3 D hierarchically nanoporous web(3 D MIL-68(Al)@MWCNTs web)with a very high surface area,a large amount of micropores,electrical conductivity and elasticity strongly traps the soluble polyselenides during the electrochemical reaction and significantly facilitates lithium ion diffusion and electron transportation.Molecular dynamic calculation confirmed the strong affinity of MIL-68(Al)for the adsorption of polyselenides,quite suitable for Li-Se battery.Their hexahedral channels(1.56 nm)are more efficient for the confinement of polyselenides and for the diffusion of electrolytes compared to their smaller triangular channels(0.63 nm).All these excellent characteristics of 3 D MIL-68(Al)@MWCNTs web with suitable confinement of a large amount of selenium and the conductive linkage between MIL-68(Al)host by MWCNTs result in a high capacity of 453 m Ah/g at 0.2 C with 99.5%coulombic efficiency after 200 cycles with significantly improved cycle stability and rate performance.The 3 D MIL-68(Al)@MWCNTs web presents a good performance in Li-Se battery in term of the specific capacity and cycling stability and also in terms of rate performance compared with all the metal-organic framework(MOF)based or MOF derived porous carbons used in Li-Se battery. 展开更多
关键词 Lithium selenium battery Selenium confinement 3D hierarchically nanoporous web Metal-organic framework(MOF) Multi walled carbon nanotubes
下载PDF
Enhanced stability of highly-dispersed copper catalyst supported by hierarchically porous carbon for long term selective hydrogenation 被引量:2
4
作者 Nian Hu Xiao-Yun Li +7 位作者 Si-Ming Liu Zhao Wang Xiao-Ke He Yue-Xin Hou Yu-Xiang Wang Zhao Deng Li-Hua Chen Bao-Lian Su 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1081-1090,共10页
Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalyt... Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction. 展开更多
关键词 Hierarchically porous structure CATALYST Cu/C Selective hydrogenation Metal organic frameworks
下载PDF
Synergistic effects of carbon doping and coating of TiO_(2) with exceptional photocurrent enhancement for high performance H2 production from water splitting 被引量:2
5
作者 Yingying Wang Yan-Xin Chen +7 位作者 Tarek Barakat Tian-Ming Wang Alain Krief Yu-Jia Zeng Marvin Laboureur Luca Fusaro Hong-Gang Liao Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期141-151,共11页
The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boos... The"one pot"simultaneous carbon coating and doping of TiO_(2) materials by the hydrolysis of TiCl4 in fructose is reported.The synergistic effect of carbon doping and coating of TiO_(2) to significantly boost textural,optical and electronic properties and photocurrent of TiO_(2) for high performance visible light H2 production from water splitting has been comprehensively investigated.Carbon doping can significantly increase the thermal stability,thus inhibiting the phase transformation of the Titania material from anatase to rutile while carbon coating can suppress the grain aggregation of TiO_(2).The synergy of carbon doping and coating can not only ensure an enhanced narrowing effect of the electronic band gap of TiO_(2) thus extending the absorption of photocatalysts to the visible regions,but also promote dramatically the separation of electron-hole pairs.Owing to these synergistic effects,the carbon coated and doped TiO_(2) shows much superior photocatalytic activity for both degradation of organics and photocatalytic/photoelectro chemical(PEC)water splitting under simulated sunlight illumination.The photocatalytic activity of obtained materials can reach 5,4 and 2 times higher than that of pristine TiO_(2),carbon doped TiO_(2) and carbon coated TiO_(2),respectively in the degradation of organic pollutants.The carbon coated and doped TiO_(2) materials exhibited more than 37 times and hundreds of times photocurrent enhancement under simulated sunlight and visible light,respectively compared to that of pristine TiO_(2).The present work providing new comprehensive understanding on carbon coating and doping effect could be very helpful for the development of advanced TiO_(2) materials for a large series of applications. 展开更多
关键词 Carbon coating and doping TiO_(2) ONE-POT PEC water splitting Solar light photocatalysis
下载PDF
Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery 被引量:1
6
作者 Hongyan Li Wenda Dong +9 位作者 Chao Li Tarek Barakat Minghui Sun Yingying Wang Liang Wu Lang Wang Lei Xia Zhi-Yi Hu Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期624-636,共13页
Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three ... Developing host materials with high specific surface area, good electron conductivity, and fast ion transportation channel is critical for high performance lithium-selenium(Li-Se) batteries. Herein, a series of three dimensional ordered hierarchically porous carbon(3D OHPC) materials with micro/meso/macropores are designed and synthesized for Li-Se battery. The porous structure is tuned by following the concept of the generalized Murray’s law to facilitate the mass diffusion and reduce ion transport resistance.The optimized 3D Se/OHPC cathode exhibits a very high 2 nd discharge capacity of 651 m Ah/g and retains 361 m Ah/g after 200 cycles at 0.2 C. Even at a high current rate of 5 C, the battery still shows a discharge capacity as high as 155 m Ah/g. The improved electrochemical performance is attributed to the synergy effect of the interconnected and well-designed micro, meso and macroporosity while shortened ions diffusion pathways of such Murray materials accelerate its ionic and electronic conductivities leading to the enhanced electrochemical reaction. The diffusivity coefficient in Se/OHPC can reach a very high value of 1.3 × 10^(-11)cm^(2)/s, much higher than those in single pore size carbon hosts. Their effective volume expansion accommodation capability and reduced dissolution of polyselenides ensure the high stability of the battery. This work, for the first time, established the clear relationship between textural properties of cathode materials and their performance and demonstrates that the concept of the generalized Murray’s law can be used as efficient guidance for the rational design and synthesis of advanced hierarchically porous materials and the great potential of 3D OHPC materials as a practical high performance cathode material for Li-Se batteries. 展开更多
关键词 3D ordered hierarchically porous carbon(OHPC) Shuttle effect CYCLABILITY High rate capability The generalized Murray’s law Li-Se batteries
下载PDF
Methyl Halide to Olefins and Gasoline over Zeolites and SAPO Catalysts:A New Route of MTO and MTG 被引量:8
7
作者 WEI Yingxu ZHANG Dazhi +1 位作者 LIU Zhongmin SU Bao-Lian 《催化学报》 SCIE EI CAS CSCD 北大核心 2012年第1期11-21,共11页
到更有用的更高的烃的甲烷的合理、有效的变换是天然气利用的最重要的话题之一。尽管到珍贵混合物的甲烷激活和它的变换吸引增加的注意,甲烷变换经常为 syngas 通过消费精力的步以间接方法被做从甲烷改过的蒸气的生产。一些有希望的结... 到更有用的更高的烃的甲烷的合理、有效的变换是天然气利用的最重要的话题之一。尽管到珍贵混合物的甲烷激活和它的变换吸引增加的注意,甲烷变换经常为 syngas 通过消费精力的步以间接方法被做从甲烷改过的蒸气的生产。一些有希望的结果看起来为从甲烷的高增值产品的生产具有为一种选择和潜在的线路的发展的意义。到更高的烃的甲烷的有效变换能作为中介经由甲基卤化物被认识到。在 halomethane 的生产以后,他们能在修改沸石和 SAPO 上被转变到汽油和轻石蜡分子的筛。高变换效率和选择显示了工业申请的可行性。研究在基本研究和工业申请从观点获得了最近成长的兴趣。反应机制上的学习从甲基卤化物使 CC 契约建设的可能的线路清楚些,它是到更高的烃的 C1 反应物变换的重要问题。氢卤化物产生没在反应机制和催化剂的结构稳定性上在甲基卤化物变换期间施加明显的影响。这评论处理这个领域和注释的进化要探索的优点和缺点经由甲基卤化物发送为新、持续的 methane-to-olefins (MTO ) 和 methane-to-gasoline (MTG ) 的开发被阻止。 展开更多
下载PDF
Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting 被引量:7
8
作者 Ying-Ying Wang Yan-Xin Chen +4 位作者 Tarek Barakat Yu-Jia Zeng Jing Liu Stéphane Siffert Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期529-559,I0015,共32页
Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime go... Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime goal of carbon neutral. TiO_(2) based photocatalysts with high chemical stability and excellent photocatalytic properties have great potential for solar-to-H_(2) conversion. To conquer the challenges of the large band-gap and rapid recombination of photo generated electron-holepairs in TiO_(2), non-metal doping turns out to be economic, facile, and effective on boosting the visible light activity. The localized defect states such as oxygen vacancy and Ti^(3+) generated by non-metal doping are located in the band-gap of TiO_(2), which result in the reduction of band-gap, thus a red-shift of the absorption edge. The hetero doping atoms such as B^(3+), I^(7+), S^(4+)/S^(6+), P^(5+) can also act as electron donors or trap sites which facilitate the charge carrier separation and suppress the recombination of electron-hole pairs. In this comprehensive review, we present the most recent advances on non-metal doped TiO_(2) photocatalysts in terms of fundamental aspects, origin of visible light activity and the PC / PEC behaviours for water splitting. In particular, the characteristics of different non-metal elements (N, C, B, S, P, Halogens) as dopants are discussed in details focusing on the synthesis approaches, characterization as well as the efficiency of PC and PEC water splitting. The present review aims at guiding the readers who want quick access to helpful information about how to efficiently improve the performance of photocatalysts by simple doping strategies and could stimulate new intuitive into the new doping strategies. 展开更多
关键词 Photocatalytic/Photoelectrochemical water SPLITTING TITANIA Non-metal doping Visible light photocatalysis
下载PDF
Hydrophilic bi-functional B-doped g-C_(3)N_(4) hierarchical architecture for excellent photocatalytic H_(2)O_(2) production and photoelectrochemical water splitting 被引量:6
9
作者 Yang Ding Soumyajit Maitra +8 位作者 Chunhua Wang Runtian Zheng Meiyu Zhang Tarek Barakat Subhasis Roy Jing Liu Yu Li Tawfique Hasan Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期236-247,I0007,共13页
Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.He... Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications. 展开更多
关键词 Boron doping HYDROPHILICITY Hierarchically assembled architectures Photocatalytic H_(2)O_(2)production Photoelectrocatalytic water splitting
下载PDF
Bronze TiO2 as a cathode host for lithium-sulfur batteries 被引量:3
10
作者 Wenjing Dong Di Wang +8 位作者 Xiaoyun Li Yuan Yao Xu Zhao Zhao Wang Hong-En Wang Yu Li Lihua Chen Dong Qian Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期259-266,I0008,共9页
Lithium-sulfur batteries(LSBs)are very promising for large-scale electrochemical energy storage.However,dissolution and shuttling of lithium polysulfides(LiPSs)intermediates have severely affected their overall electr... Lithium-sulfur batteries(LSBs)are very promising for large-scale electrochemical energy storage.However,dissolution and shuttling of lithium polysulfides(LiPSs)intermediates have severely affected their overall electrochemical properties and limited their practical application.Designing polar cathode hosts that can effectively bind LiPSs and simultaneously promote their redox conversion is crucial for realizing high-performance LSBs.Herein,we report bronze TiO2(TiO2-B)nanosheets(~5 nm in thickness)chemically bonded with carbon as a novel multifunctional cathode host for advanced LSBs.Experimental observation and first-principles density functional theory(DFT)calculations reveal that the TiO2-B with exposed(100)plane and Ti^3+ions exhibited high chemical affinity toward polysulfides and effectively confined them at surface.Meantime,Ti^3+ions and interface coupling with carbon promoted electronic conductivity of the composite cathode,leading to enhanced redox conversion kinetics of LiPSs during charge/discharge.Consequently,the as-assembled TiO2-B/S cathode manifested high capacity(1165 mAh/g at 0.2 C),excellent rate capability(244 mAh/g at 5 C)and outstanding cyclability(572 mAh/g over 500cycles at 0.2 C).This work sheds insights on rational design and fabrication of novel functional electrode materials for beyond Li-ion batteries. 展开更多
关键词 Titanium dioxide CATHODE POLYSULFIDES Shuttle effect Lithium-sulfur batteries Electrochemistry Density functional theory
下载PDF
Self-assembly to monolayer graphene film with high electrical conductivity 被引量:3
11
作者 Yi Lu Xiao-Yu Yang Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期52-57,共6页
Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was... Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was characterized by FT-IR, XRD, SEM, TEM and AFM. Results show that CCG sheets formed monolayer film after assembled onto silicon wafer and there is a very tight chemical bond between sheets and wafer. Furthermore, the electrical measurements revealed that the monolayer graphene film has an excellent electrical conductivity. 展开更多
关键词 monolayer graphene SELF-ASSEMBLE electrical conductivity
下载PDF
Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery 被引量:2
12
作者 Wen-Bei Yu Wen-Da Dong +10 位作者 Chao-Fan Li Nasiruddin Macadam Jiu-Xiang Yang Guo-Bin Zhang Zhi-Yi Hu Tien-Chun Wu Yu Li Tawfique Hasan Li-Hua Chen Li-Qiang Mai Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期38-46,I0002,共10页
Supercapacitor-like Na-ion batteries have attracted much attention due to the high energy density of batteries and power density of capacitors.Titanium dioxide(TiO_(2)),is a promising anode material.Its performance is... Supercapacitor-like Na-ion batteries have attracted much attention due to the high energy density of batteries and power density of capacitors.Titanium dioxide(TiO_(2)),is a promising anode material.Its performance is however seriously hindered by its low electrical conductivity and the sluggish diffusion of sodium ions(Na^(+))in the TiO_(2)matrix.Herein,this work combines porous TiO_(2)nanocubes with carbon nanotubes(CNTs)to enhance the electrical conductivity and accelerate Na^(+)diffusivity for Na-ion batteries(NIBs).In this composite,an interwoven scaffolded TiO_(2)/CNTs framework is formed to provide abundant channels and shorter diffusion pathways for electrons and ions.The in-situ X-ray diffraction and cyclic voltammetry confirm the low strain and superior transport kinetics in Na^(+)intercalation/extraction processes.In addition,the chemically bonded TiO_(2)/CNTs hybrid provides a more feasible channel for Na^(+)insertion/extraction with a much lower energy barrier.Consequently,the TiO_(2)/CNTs composite exhibits excellent electrochemical performance with a capacity of 223.4 m Ah g^(-1)at 1 C and a capacity of 142.8 m Ah g^(-1)at 10 C(3.35 A g^(-1)).The work here reveals that the combination of active materials with CNTs can largely improve the utilization efficiency and enhance their sodium storage. 展开更多
关键词 Supercapacitor-like Interwoven scaffold Na-ion battery TiO_(2) Carbon nanotubes
下载PDF
Mn^(4+) activated phosphors in photoelectric and energy conversion devices
13
作者 Yang Ding Chunhua Wang +8 位作者 Lang Pei Qinan Mao Sateesh Bandaru Runtian Zheng Soumyajit Maitra Meijiao Liu Li-Hua Chen Bao-Lian Su Jiasong Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期277-299,I0007,共24页
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices... Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications. 展开更多
关键词 Mn^(4+) activator PHOSPHOR Structure tailoring Photoelectric device Energy conversion
下载PDF
Bioinspired urchin-like murray carbon nanostructure with protection shell for advanced lithium-sulfur batteries
14
作者 Ya-Wen Tian Yong Yu +9 位作者 Liang Wu Min Yan Wen-Da Dong Chen-Yang Wang Hemdan S.H.Mohamed Zhao Deng Li-Hua Chen Tawfique Hasan Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期1-10,I0002,共11页
Commercial application of lithium-sulfur(Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray's carbon nanostructure... Commercial application of lithium-sulfur(Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray's carbon nanostructure(N-MCN) with interconnected micro-meso-macroporous structure and a polydopamine protection shell has been designed as an effective sulfur host for high-performance Li-S batteries. The advanced 3D hierarchically porous framework with the characteristics of the generalized Murray's law largely improves electrolyte diffusion, facilitates electrons/ions transfer and provides strong chemisorption for active species, leading to the synergistic structural and chemical confinement of polysulfides. As a result,the obtained P@S/N-MCN electrode with high areal sulfur loading demonstrates high capacity at high current densities after long cycles. This work reveals that following the generalized Murray's law is feasible to design high-performance sulfur cathode materials for potentially practical Li-S battery applications. 展开更多
关键词 Li-S batteries Murray’s law Hierarchically porous framework N-doped carbon Structural-chemical confinement
下载PDF
Crystalline porous materials:from zeolites to metal-organic frameworks(MOFs)
15
作者 Zaiku Xie Bao-Lian Su 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第2期123-126,共4页
As a class of important crystalline porous materials,zeolites which were first found in 1756 have now been widely used in chemical industries for catalysis,adsorption and separation.35232 patents with the title includ... As a class of important crystalline porous materials,zeolites which were first found in 1756 have now been widely used in chemical industries for catalysis,adsorption and separation.35232 patents with the title including Hzeolite*n are documented by Derwent Innovations Index on January 2,2020[1].Despite of spread applications of zeolites and related-materials in industry,fundamental research of zeolites and their applications are still desired in both academia and industry,as shown in Fig.1. 展开更多
关键词 POROUS zeolites ZEOLITE
原文传递
The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance 被引量:3
16
作者 Yuexin Hou Xiaoyun Li +8 位作者 Minghui Sun Chaofan Li Syed ul Hasnain Bakhtiar Kunhao Lei Shen Yu Zhao Wang Zhiyi Hu Lihua Chen Bao-Lian Su 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第2期269-278,共10页
Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibit... Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibits improved mass transport properties,excellent mechanical and hydrothermal stability,and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction.Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores,which increases the final catalytic conversion.The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites.These poisoned Hier-ZSM-5-x shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite,which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant,leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites.This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance. 展开更多
关键词 hierarchical zeolites single crystalline interconnected pores improved diffusion performance benzyl alcohol self-etherification reaction
原文传递
Boosting reaction kinetics and shuttle effect suppression by single crystal MOF-derived N-doped ordered hierarchically porous carbon for high performance Li-Se battery 被引量:2
17
作者 Hongyan Li Wenda Dong +5 位作者 Chao Li Yingying Wang Ming-Hui Sun Tarek Barakat Yu Li Bao-Lian Su 《Science China Materials》 SCIE EI CAS CSCD 2022年第11期2975-2988,共14页
Maximizing the fixing ability of polyselenides to reduce the shuttle effect in Li-Se batteries remains highly challenging.Single crystal metal-organic framework(MOF)-derived N-doped ordered hierarchically porous carbo... Maximizing the fixing ability of polyselenides to reduce the shuttle effect in Li-Se batteries remains highly challenging.Single crystal metal-organic framework(MOF)-derived N-doped ordered hierarchically porous carbon(SNOHPC)synthesized by a confined crystal growth and template-assisted method demonstrates excellent electrochemical performance as a host material for Li-Se battery.The large number of micropores inherited from the MOF structure provides large space and surface for Se loading and reaction sites,ensuring the high energy density of the battery.The insitu X-ray diffraction(XRD)technique is used to understand the reaction mechanism.The synergy of the interconnected three-scale-level micro-meso-macroporous structure and Ndoped polar sites can buffer the volume expansion,shorten the ion transportation with a very high diffusion coefficient of4.44×10cm^(2)sand accelerate the lithiation/delithiation reaction.Selenium is sufficiently reactive and the polyselenide intermediates are tightly fixed inside the carbon host material,thereby achieving excellent specific capacity,stability,and rate capability.Such a cathode exhibits a very high 2discharge/charge capacity of 658 and 683 mA h g,respectively,and retains a very high capacity of 367 mA h gafter 200 cycles at the current of 0.2 C.Even at the high current of 5 C,a very high discharge capacity of 230 mA h gis obtained.This work provides a new kind of high-performance porous materials with rational pore arrangement applicable for highly efficient energy storage. 展开更多
关键词 single crystal MOF N-doped ordered hierarchically porous carbon shuttle effect diffusion coefficient Li-Se battery
原文传递
Highly Selective Photocatalytic Conversion of Glucose on Holo-Symmetrically Spherical Three-Dimensionally Ordered Macroporous Heterojunction Photonic Crystal 被引量:1
18
作者 Ting-Wei Wang Zhi-Wen Yin +8 位作者 Yin-Hao Guo Fang-Yuan Bai Jun Chen Wenda Dong Jing Liu Zhi-Yi Hu Lihua Chen Yu Li Bao-Lian Su 《CCS Chemistry》 CSCD 2023年第8期1773-1788,共16页
Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are ... Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are still the main bottlenecks for photocatalytic biomass conversion.Herein,we report the highly selective photocatalytic conversion of glucose solution on holosymmetrically spherical three-dimensionally ordered macroporous TiO_(2)-CdSe heterojunction photonic crystal structure(s-TCS).The obtained s-TCS photocatalysts show excellent stability and strong light harvesting,uniform mass diffusion and exchange,and efficient photogenerated electrons/holes separation and utilization.The optimized s-TCS-4 photocatalyst displays the highest photocatalytic performance for glucose oxidation and hydrogen production.The glucose conversion,lactic acid selectivity,and yield on s-TCS-4 are about 95.9%,94.3%,and 96.4%,respectively.The photocatalytic production of lactic acid for s-TCS-4(18.5 g/L)is 2.3 times higher than the pure spherical TiO_(2) photonic crystal without CdSe(s-TiO_(2),8.1 g/L),and the hydrogen production rate of s-TCS-4 is 9.4 times that of s-TiO_(2).For the first time,we reveal that the photocatalytic conversion of glucose to lactic acid is a third-order and four-electron-involved reaction.This work could shed some new light on the efficient photocatalysis conversion of biomass to highly value-added products with high selectivity and yield,and simultaneously sustainable hydrogen evolution. 展开更多
关键词 TiO_(2)-CdSe heterojunction spherical photonic crystal high-selective photocatalytic glucose conversion lactic acid photocatalytic H2 production four-electron involved reaction third-order reaction
原文传递
Three-dimensionally ordered macroporous materials for pollutants abatement,environmental sensing and bacterial inactivation
19
作者 Yang Ding Chun-Hua Wang +7 位作者 Jia-Song Zhong Qi-Nan Mao Run-Tian Zheng Yun Hau Ng Ming-Hui Sun Soumyajit Maitra Li-Hua Chen Bao-Lian Su 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第7期1886-1904,共19页
Owing to their facile reactants migration channels,large surface area,maximized exposure of reaction sites and efficient light utilization,three-dimensionally ordered macroporous(3DOM)materials have been extensively a... Owing to their facile reactants migration channels,large surface area,maximized exposure of reaction sites and efficient light utilization,three-dimensionally ordered macroporous(3DOM)materials have been extensively adopted in environmental fields such as pollutants removal,environmental detection as well as bacterial disinfection.In this review,the up-to-date 3DOM materials,the corresponding synthesis protocols and the related environmental applications involving photo/electrocatalytic pollutants decomposition,thermocatalytic volatile organic compounds(VOCs)elimination,hazardous substances sensing and bacteria inactivation are completely presented.Simultaneously,the inherent advantages and mechanisms of 3DOM materials in different environmental utilization are thoroughly demonstrated and summarized.Furthermore,the improved performance of environmental applications and the methods of fabricating 3DOM materials are correlated in depth,being favorable for readers to obtain the fundamental knowledge and to motivate some innovative thoughts for modifying 3DOM materials with further elevated environmental remediation capability.Finally,the current difficulties and prospects of 3DOM materials for large-scale and commercial applications are outlooked.This critical review is anticipated to promote the optimization of 3DOM materials and to ripen the related environmental remediation techniques. 展开更多
关键词 3DOM environmental remediation CATALYSIS VOCS DISINFECTION
原文传递
Graphitic carbons:preparation,characterization,and application on K-ion batteries
20
作者 Kang-Zhe Cao Jia-Hui Ma +5 位作者 Yu-Lian Dong Yu Duan Run-Tian Zheng Dharani Bundhooa Hui-Qiao Liu Yong Lei 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4056-4075,共20页
K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most prom... K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most promising anode materials for KIBs,graphitic carbons,especially those with an intermediate structure between the crystalline graphite and amorphous carbons become a hot research focus because of the improved rate capability and enhanced diffusion-controlled capacity at low voltage regions.Herein,we first review the structures of graphitic carbons in the view of graphitic domains and the structure changes in their K-ion intercalation compounds.Then,we summarize the preparation mechanisms and characterizations of graphitic carbons and the influence factors in their degree of graphitization.Furtherly,we illustrate the strategies to optimize their K-ion storage properties from four aspects,namely graphitic domain design,microstructure engineering,electrochemical active component regulation,and defect engineering.Finally,we propose the issues that urgently need to be solved in graphitic carbons and the possible solutions.We hope that this view could offer some inspiration for the further designing and optimizing of graphitic carbons for practical KIBs. 展开更多
关键词 Graphitic carbon K-ion battery ANODE GRAPHITE Structure design
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部