期刊文献+
共找到457篇文章
< 1 2 23 >
每页显示 20 50 100
Molecular Simulation for the Materials-Oriented Chemical Engineering 被引量:1
1
作者 LU Xiao-hua SHAO Qing HUANG Liang-liang WANG Jun FENG Xin LU Ling-hong 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期844-844,共1页
关键词 纳米流体 微观结构 分子模拟方法
下载PDF
Recent progress on nanomaterial-based electrochemical dissolved oxygen sensors
2
作者 Shaoqi Zhang Tao Liu +1 位作者 Zhenyu Chu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期103-119,共17页
Dissolved oxygen(DO)usually refers to the amount of oxygen dissolved in water.In the environment,medicine,and fermentation industries,the DO level needs to be accurate and capable of online monitoring to guide the pre... Dissolved oxygen(DO)usually refers to the amount of oxygen dissolved in water.In the environment,medicine,and fermentation industries,the DO level needs to be accurate and capable of online monitoring to guide the precise control of water quality,clinical treatment,and microbial metabolism.Compared with other analytical methods,the electrochemical strategy is superior in its fast response,low cost,high sensitivity,and portable device.However,an electrochemical DO sensor faces a trade-off between sensitivity and long-term stability,which strongly limits its practical applications.To solve this problem,various advanced nanomaterials have been proposed to promote detection performance owing to their excellent electrocatalysis,conductivity,and chemical stability.Therefore,in this review,we focus on the recent progress of advanced nanomaterial-based electrochemical DO sensors.Through the comparison of the working principles on the main analysis techniques toward DO,the advantages of the electrochemical method are discussed.Emphasis is placed on recently developed nanomaterials that exhibit special characteristics,including nanostructures and preparation routes,to benefit DO determination.Specifically,we also introduce some interesting research on the configuration design of the electrode and device,which is rarely introduced.Then,the different requirements of the electrochemical DO sensors in different application fields are included to provide brief guidance on the selection of appropriate nanomaterials.Finally,the main challenges are evaluated to propose future development prospects and detection strategies for nanomaterial-based electrochemical sensors. 展开更多
关键词 NANOMATERIAL Dissolved oxygen Electrochemical sensor NANOSTRUCTURES Detection principles
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
3
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
下载PDF
Design and Fabrication of Ceramic Catalytic Membrane Reactors for Green Chemical Engineering Applications 被引量:4
4
作者 Guangru Zhang Wanqin Jin Nanping Xu 《Engineering》 SCIE EI 2018年第6期848-860,共13页
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei... Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined. 展开更多
关键词 DENSE CERAMIC MEMBRANE Porous CERAMIC MEMBRANE CATALYTIC MEMBRANE REACTOR Gas separation Heterogeneous CATALYSIS
下载PDF
Microfluidic field strategy for enhancement and scale up of liquid-liquid homogeneous chemical processes by optimization of 3D spiral baffle structure 被引量:1
5
作者 Shuangfei Zhao Yingying Nie +7 位作者 Wenyan Zhang Runze Hu Lianzhu Sheng Wei He Ning Zhu Yuguang Li Dong Ji Kai Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期255-265,共11页
Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing... Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process. 展开更多
关键词 Mixing efficiency Chemical process intensification Scale up REACTOR Computational fluid dynamics(CFD) Numerical simulation
下载PDF
Electrochemical Water Splitting:Bridging the Gaps Between Fundamental Research and Industrial Applications 被引量:1
6
作者 Hainan Sun Xiaomin Xu +3 位作者 Hyunseung Kim WooChul Jung Wei Zhou Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期22-42,共21页
Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory s... Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory scale have been made for understanding fundamental catalysis and developing high-performance electrocatalysts for the two half-reactions involved in water electrocatalysis,much less attention has been paid to doing relevant research on a larger scale.For example,few such researches have been done on an industrial scale.Herein,we review the very recent endeavors to bridge the gaps between fundamental research and industrial applications for water electrolysis.We begin by introducing the fundamentals of electrochemical water splitting and then present comparisons of testing protocol,figure of merit,catalyst of interest,and manufacturing cost for laboratory and industry-based water-electrolysis research.Special attention is paid to tracking the surface reconstruction process and identifying real catalytic species under different testing conditions,which highlight the significant distinctions of corresponding electrochemical reconstruction mechanisms.Advances in catalyst designs for industry-relevant water electrolysis are also summarized,which reveal the progress of moving the practical applications forward and accelerating synergies between material science and engineering.Perspectives and challenges of electrocatalyst design strategies are proposed finally to further bridge the gaps between lab-scale research and large-scale electrocatalysis applications. 展开更多
关键词 electrocatalyst design electrochemical water splitting gaps and bridges laboratory scale and industrial scale
下载PDF
Advances in Sn-Based Catalysts for Electrochemical CO_(2) Reduction 被引量:7
7
作者 Shulin Zhao Sheng Li +4 位作者 Tao Guo Shuaishuai Zhang Jing Wang Yuping Wu Yuhui Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期114-132,共19页
The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and... The increasing concentration of CO2 in the atmosphere has led to the greenhouse effect,which greatly affects the climate and the ecological balance of nature.Therefore,converting CO2 into renewable fuels via clean and economical chemical processes has become a great concern for scientists.Electrocatalytic CO2 conversion is a prospective path toward carbon cycling.Among the different electrocatalysts,Sn-based electrocatalysts have been demonstrated as promising catalysts for CO2 electroreduction,producing formate and CO,which are important industrial chemicals.In this review,various Sn-based electrocatalysts are comprehensively summarized in terms of synthesis,catalytic performance,and reaction mechanisms for CO2 electroreduction.Finally,we concisely discuss the current challenges and opportunities of Sn-based electrocatalysts. 展开更多
关键词 Greenhouse effect CO_(2) ELECTROCHEMICAL REDUCTION Sn-based ELECTROCATALYSTS
下载PDF
Heterogeneous interfacial engineering of Pd/TiO2 with controllable carbon content for improved direct synthesis efficiency of H2O2 被引量:3
8
作者 Wei Yan Rui Sun +5 位作者 Meng Li Licheng Li Zhuhong Yang Zelin Hua Xiaohua Lu Chang Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期312-321,共10页
Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-T... Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2. 展开更多
关键词 Direct synthesis of H2O2 TiO2 CARBON Heterogeneous interfacial engineering PD
下载PDF
Fouling behavior of poly(vinylidene fluoride)(PVDF)ultrafiltration membrane by polyvinyl alcohol(PVA)and chemical cleaning method 被引量:3
9
作者 Weijie Ding Min Chen +3 位作者 Ming Zhou Zhaoxiang Zhong Zhaoliang Cui Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3018-3026,共9页
Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and ... Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects. 展开更多
关键词 PVDF membrane FOULING PVA Chemical cleaning
下载PDF
Physicochemical properties and structure of fluid at nano-/micro-interface:Progress in simulation and experimental study 被引量:3
10
作者 Qingwei Gao Yumeng Zhang +4 位作者 Shuting Xu Aatto Laaksonen Yudan Zhu Xiaoyan Ji Xiaohua Lu 《Green Energy & Environment》 SCIE CSCD 2020年第3期274-285,共12页
In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the revi... In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects. 展开更多
关键词 THERMODYNAMICS Solid/fluid interface Surface-induced Adsorbed layer Microstructure
下载PDF
Ionic liquids for CO_(2) electrochemical reduction 被引量:5
11
作者 Fangfang Li Francesca Mocci +2 位作者 Xiangping Zhang Xiaoyan Ji Aatto Laaksonen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期75-93,共19页
Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energ... Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energy in value-added chemicals and fuels.Ionic liquids(ILs),as medium and catalysts(or supporting part of catalysts)have been given wide attention in the electrochemical CO_(2) reduction reaction(CO_(2) RR)due to their unique advantages in lowering overpotential and improving the product selectivity,as well as their designable and tunable properties.In this review,we have summarized the recent progress of CO_(2) electro-reduction in IL-based electrolytes to produce higher-value chemicals.We then have highlighted the unique enhancing effect of ILs on CO_(2) RR as templates,precursors,and surface functional moieties of electrocatalytic materials.Finally,computational chemistry tools utilized to understand how the ILs facilitate the CO_(2) RR or to propose the reaction mechanisms,generated intermediates and products have been discussed. 展开更多
关键词 Carbon dioxide Ionic liquids ELECTRO-REDUCTION ELECTROLYTE Electrocatalytic material Computer simulation
下载PDF
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells 被引量:2
12
作者 Zuoqing Liu Zhengjie Tang +8 位作者 Yufei Song Guangming Yang Wanru Qian Meiting Yang Yinlong Zhu Ran Ran Wei Wang Wei Zhou Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期505-520,共16页
Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem... Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs. 展开更多
关键词 Reversible proton ceramic electrochemical cells High-entropy oxide Air electrode Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Atomic-level insights into surface engineering of semiconductors for photocatalytic CO_(2) reduction 被引量:2
13
作者 Hengming Huang Hui Song +2 位作者 Jiahui Kou Chunhua Lu Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期309-341,共33页
Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2... Photocatalytic conversion of CO_(2)into solar fuels provides a bright route for the green and sustainable development of human society.However,the realization of efficient photocatalytic CO_(2)reduction reaction(CO_(2)RR)is still challenging owing to the sluggish kinetics or unfavorable thermodynamics for basic chemical processes of CO_(2)RR,such as adsorption,activation,conversion and product desorption.To overcome these shortcomings,recent works have demonstrated that surface engineering of semiconductors,such as introducing surface vacancy,surface doping,and cocatalyst loading,serves as effective or promising strategies for improved photocatalytic CO_(2)RR with high activity and selectivity.The essential reason lies in the activation and reaction pathways can be optimized and regulated through the reconstruction of surface atomic and electronic structures.Herein,in this review,we focus on recent research advances about rational design of semiconductor surface for photocatalytic CO_(2)RR.The surface engineering strategies for improved CO_(2)adsorption,activation,and product selectivity will be reviewed.In addition,theoretical calculations along with in situ characterization techniques will be in the spotlight to clarify the kinetics and thermodynamics of the reaction process.The aim of this review is to provide deep understanding and rational guidance on the design of semiconductors for photocatalytic CO_(2)RR. 展开更多
关键词 CO_(2)reduction PHOTOCATALYSIS Surface engineering Activation SELECTIVITY
下载PDF
Formulation Design of the Multi-component Cement Additive by Using Engineering Statistics 被引量:1
14
作者 黄弘 沈晓冬 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期538-544,共7页
A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as trietha... A novel methodology for the formulation design of the multi-component cement additive for the low early strength blend cement was presented by using engineering statistics.Components of cement additive such as triethanolamine,chloride,saccharide and a kind of divalent alcohol were simultaneously tested according to the arrangement of response surface methodology.Mathematical models were established to express the quantitative relationship between the chemical components of cement additive and the compressive strength of treated blend cement.The effectiveness and the possible interactions of these four chemicals contributing to the strength development of blend cement were further explored by the pareto chart and the contour plot.Finally according the performance analysis of four chemicals,the optimized formulations were brought forward and were validated in practical trials by Turkey's multiple comparison. 展开更多
关键词 cement additive blend cement EFFECTIVENESS INTERACTION engineering statistics
下载PDF
Electrolyte materials for protonic ceramic electrochemical cells:Main limitations and potential solutions 被引量:1
15
作者 Anna V.Kasyanova Inna A.Zvonareva +3 位作者 Natalia A.Tarasova Lei Bi Dmitry A.Medvedev Zongping Shao 《Materials Reports(Energy)》 2022年第4期19-35,共17页
Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As... Solid oxide fuel cells(SOFCs)and electrolysis cells(SOECs)are promising energy conversion devices,on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future.As compared with oxygen-conducting cells,the operational temperatures of protonic ceramic fuel cells(PCFCs)and electrolysis cells(PCECs)can be reduced by several hundreds of degrees(down to low-and intermediatetemperature ranges of 400–700C)while maintaining high performance and efficiency.This is due to the distinctive characteristics of charge carriers for proton-conducting electrolytes.However,despite achieving outstanding lab-scale performance,the prospects for industrial scaling of PCFCs and PCECs remain hazy,at least in the near future,in contrast to commercially available SOFCs and SOECs.In this review,we reveal the reasons for the delayed technological development,which need to be addressed in order to transfer fundamental findings into industrial processes.Possible solutions to the identified problems are also highlighted. 展开更多
关键词 Protonic ceramic fuel cells(PCFCs) Protonic ceramic electrolysis cells(PCECs) Proton transport ELECTROCHEMISTRY Hydrogen energy
下载PDF
Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals:current status and future perspectives 被引量:2
16
作者 Jing Wang Ruirui Qin +4 位作者 Yuanke Guo Chen Ma Xin Wang Kequan Chen Pingkai Ouyang 《Green Chemical Engineering》 EI CSCD 2023年第2期199-211,共13页
Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals,due to its natural abundance and mature production technology.Native methylotrophs,which can utilize methanol as the... Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals,due to its natural abundance and mature production technology.Native methylotrophs,which can utilize methanol as the only source of carbon and energy,are ideal hosts for methanol bioconversion due to their high methanol utili-zation rate and have been extensively employed in the production of value-added chemicals from methanol.Here,we review the natural methanol utilization pathways in native methylotrophs,describing the available synthetic biology tools developed for engineering native methylotrophs,and discuss the strategies for improving their methanol utilization efficiency.Finally,the representative examples of engineering the native methylotrophs to produce value-added products from methanol are summarized.Furthermore,we also discuss the major challenges and possible solutions for the application of native methylotrophs in methanol-based biomanufacturing. 展开更多
关键词 Native methylotrophs METHANOL Biomanufacturing Value-added chemicals
原文传递
Optical and electrochemical dual detection ofβ-lactoglobulin based on the methylene blue@copper-based metal-organic framework
17
作者 Yuwei Wang Jingyi Hong +2 位作者 Xinlong Wang Liying Zhu Ling Jiang 《Food Materials Research》 2022年第1期131-138,共8页
β-lactoglobulin is an effective indicator of allergic protein detection.Herein,we produced a copper-based metal-organic framework coated with methylene blue,to realize the optical and electrochemical dual detection o... β-lactoglobulin is an effective indicator of allergic protein detection.Herein,we produced a copper-based metal-organic framework coated with methylene blue,to realize the optical and electrochemical dual detection ofβ-lactoglobulin.Methylene blue was successfully encapsulated inside the copper-based metal-organic framework and released after addition ofβ-lactoglobulin.As the concentration ofβ-lactoglobulin increased,the intensity of the ultraviolet absorption band and the response current increased with the increasing concentration of methylene blue released from the copper-based metal-organic framework.The optical detection range is from 0.10 mg/mL to 10 mg/mL,and the detection limit is 0.10 mg/mL.The electrochemical detection range is from 1.0×10^(-7) mg/mL to 8.0×10^(-7) mg/mL,the detection limit is 2.0×10^(-8) mg/mL.The dual detection strategy,with no interfere with each other,played a synergetic role in the quick qualitative and precise quantitative analyses ofβ-lactoglobulin in a wide range of applications. 展开更多
关键词 COPPER METHYLENE ELECTROCHEMICAL
下载PDF
Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources 被引量:2
18
作者 Peng Jiang Guanhan Zhao +4 位作者 Hao Zhang Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1068-1078,共11页
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a... Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier. 展开更多
关键词 Biomass pyrolysis CO_(2)mitigation Calcium carbide ACETYLENE Calcium loop
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:1
19
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols
20
作者 Zhihao Guo Jiuxuan Zhang +3 位作者 Lanlan Chen Chaoqun Fan Hong Jiang Rizhi Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期157-166,共10页
The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named... The selective hydrogenation of highly toxic phenolic compounds to generate alcohols with thermal stability,environmental friendliness,and non-toxicity is of great importance.Herein,a series of Co-based catalysts,named Co@NCNTs,were designed and constructed by direct pyrolysis of hollow ZIF-67(HZIF-67)under H_(2)/Ar atmosphere.The evolution of the catalyst surface from the shell layer assembled by ZIF-67-derived particles to the in situ-grown hollow nitrogen-doped carbon nanotubes(NCNTs)with certain length and density is achieved by adjusting the pyrolysis atmosphere and temperature.Due to the synergistic effects of in situ-formed hollow NCNTs,well-dispersed Co nanoparticles,and intact carbon matrix,the as-prepared Co@NCNTs-0.10-450 catalyst exhibits superior catalytic performance in the hydrogenation of phenolic compounds to alcohols.The turnover frequency value of Co@NCNTs-0.10-450is 3.52 h^(-1),5.9 times higher than that of Co@NCNTs-0.40-450 and 4.5 times higher than that of Co@NCNTs-0.10-550,exceeding most previously reported non-noble metal catalysts.Our findings provide new insights into the development of non-precious metal,efficient,and cost-effective metal-organic framework-derived catalysts for the hydrogenation of phenolic compounds to alcohols. 展开更多
关键词 Phenolic compounds Hollow ZIF-67 pyrolysis Nitrogen-doped carbon nanotubes Reduction Multiphase reaction Catalysis
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部