期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Entire Sign-Changing Solutions to the Fractional Critical Schrodinger Equation
1
作者 Xingdong Tang Guixiang Xu +1 位作者 Chunyan Zhang Jihui Zhang 《Annals of Applied Mathematics》 2024年第3期219-248,共30页
In this paper,we consider the fractional critical Schrödinger equation(FCSE)(-Δ)^(s)u-|u|2^(*)s-2 u=0,where u∈˙H^(s)(R^(N)),N≥4,0<s<1 and 2^(*)s=2 N/N-2 s is the critical Sobolev exponent of order s.By ... In this paper,we consider the fractional critical Schrödinger equation(FCSE)(-Δ)^(s)u-|u|2^(*)s-2 u=0,where u∈˙H^(s)(R^(N)),N≥4,0<s<1 and 2^(*)s=2 N/N-2 s is the critical Sobolev exponent of order s.By virtue of the variational method and the concentration compactness principle with the equivariant group action,we obtain some new type of nonradial,sign-changing solutions of(FCSE)in the energy space˙H^(s)(R^(N)).The key component is that we take the equivariant group action to construct several subspace of˙H^(s)(R^(N))with trivial intersection,then combine the concentration compactness argument in the Sobolev space with fractional order to show the compactness property of Palais-Smale sequences in each subspace and obtain the multiple solutions of(FCSE)in˙H^(s)(R^(N)). 展开更多
关键词 Fractional critical Schrodinger equation sign-changing solution the concentration-compactness principle the equivariant group action the mountain pass theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部