期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces 被引量:1
1
作者 Su Qing WU Da Chun YANG +1 位作者 Wen YUAN Ci Qiang ZHUO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第4期699-748,共50页
This article is devoted to the study of variable 2-microlocal Besov-type and Triebel- Lizorkin-type spaces. These variable function spaces are defined via a Fourier-analytical approach. The authors then characterize t... This article is devoted to the study of variable 2-microlocal Besov-type and Triebel- Lizorkin-type spaces. These variable function spaces are defined via a Fourier-analytical approach. The authors then characterize these spaces by means of Q-transforms, Peetre maximal functions, smooth atoms, ball means of differences and approximations by analytic functions. As applications, some re- lated Sobolev-type embeddings and trace theorems of these spaces are Mso established. Moreover, some obtained results, such as characterizations via approximations by analytic functions, are new even for the classical variable Besov and Triebel-Lizorkin spaces. 展开更多
关键词 2-Microlocal Besov space 2-Microlocal Triebel-Lizorkin space variable exponent φ-transform Peetre maximal function DIFFERENCE ATOM EMBEDDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部