Objective New rationally designed i,i+7-hydrocarbon-stapled peptides that target both HIV-1 assembly and entry have been shown to have antiviral activity against HIV-1 subtypes circulating in Europe and North America...Objective New rationally designed i,i+7-hydrocarbon-stapled peptides that target both HIV-1 assembly and entry have been shown to have antiviral activity against HIV-1 subtypes circulating in Europe and North America. Here, we aimed to evaluate the antiviral activity of these peptides against HIV-1 subtypes predominantly circulating in China. Methods The antiviral activity of three i,i+7-hydrocarbon-stapled peptides, NYAD-36, NYAD-67, and NYAD-66, against primary HIV-1 CRF07_BC and CRFOI_AE isolates was evaluated in peripheral blood mononuclear cells (PI3MCs). The activity against the CRF07_BC and CRF01_AE Env-pseudotyped viruses was analyzed in TZM-bl cells. Results We found that all the stapled peptides were effective in inhibiting infection by all the primary HIV-1 isolates tested, with 50% inhibitory concentration toward viral replication (ICso) in the low micromolar range. NYAD-36 and NYAD-67 showed better antiviral activity than NYAD-66 did. We further evaluated the sensitivity of CRF01_AE and CRF07_BC Env-pseudotyped viruses to these stapled peptides in a single-cycle virus infectivity assay. As observed with the primary isolates, the ICs0s were in the low micromolar range, and NYAD-66 was less effective than NYAD-36 and NYAD-67. Conclusion Hydrocarbon-stapled peptides appear to have broad antiviral activity against the predominant HIV-1 viruses in China. This finding may provide the impetus to the rational design of peptides for future antiviral therapy.展开更多
Background Human papillomaviruses (HPVs) can infect squamous or mucosal epithelia and cause cervical cancer or genital warts. Coinfection with multiple HPV types is a common finding of many epidemiological studies. ...Background Human papillomaviruses (HPVs) can infect squamous or mucosal epithelia and cause cervical cancer or genital warts. Coinfection with multiple HPV types is a common finding of many epidemiological studies. Therefore, it is necessary to develop a vaccine, which can eradicate established HPV infections and prevent other HPV infections. In this study, we generated chimeric virus like particles (cVLPs) composed of HPV-6b L1, HPV-6b L2 and one artificial HPV-16 mE7 proteins. Methods The artificial HPV-16 mE7 gene was designed by codon modification, point mutation and gene shuffling then chemically synthesized and subcloned behind HPV-6b L2. HPV-6b L1 and L2-mE7 were expressed in insect cells by using Bac-to-Bac system. The generated cVLPs were purified by CsCI gradient ultracentrifuge and analyzed by immunoblot, electron microscope and haemagglutination assay. Results The HPV-6b L1 and L2-mE7 proteins were well expressed in insect cells and could selfassemble into cVLPs, whose diameter was about 55 nm and similar to that of HPV-6b L1/L2 VLPs. Intact cVLPs could be recognized by H6.M48 neutralizing monoclonal antibody and HPV-6b L2 polyclonal antibody, while the denatured cVLPs, but not the intact cVLPs, were reactive to HPV-16 E7 polyclonal antibody. HPV-6b LI/L2-mE7 cVLPs haemaggiutinated mouse erythrocytes as efficiently as HPV-6b L1/L2 VLPs did. Conclusions The insertion of the 158 amino acid HPV-16 mE7 protein behind L2 did not disrupt the correct assembling of cVLPs. The morphological characteristics and haemagglutinating activity of cVLPs were similar to those of HPV-6b LI/L2 VLPs. The cVLPs retained conformational B cell epitopes of HPV-6 VLPs and HPV-16 mE7 protein had an internal location in the cVLPs. Therefore, large modified E7 protein with higher immunogenicity could be incorporated into cVLPs by fusing to the C-terminus of L2, which would help to improve the therapeutic effects of LI/L2-E7 cVLPs.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,No.81261120384)the Key Project of the State Key Laboratory for Infectious Diseases Prevention and Control(SKLID,No.2011SKLID102)+3 种基金the Ministry of Science and Technology of China(2012ZX10001-002)the European Research Infrastructures for Poverty Related Diseases(312661)by funds from NIH Grant RO1 AI104416(AKD)the New York Blood Center(AKD)
文摘Objective New rationally designed i,i+7-hydrocarbon-stapled peptides that target both HIV-1 assembly and entry have been shown to have antiviral activity against HIV-1 subtypes circulating in Europe and North America. Here, we aimed to evaluate the antiviral activity of these peptides against HIV-1 subtypes predominantly circulating in China. Methods The antiviral activity of three i,i+7-hydrocarbon-stapled peptides, NYAD-36, NYAD-67, and NYAD-66, against primary HIV-1 CRF07_BC and CRFOI_AE isolates was evaluated in peripheral blood mononuclear cells (PI3MCs). The activity against the CRF07_BC and CRF01_AE Env-pseudotyped viruses was analyzed in TZM-bl cells. Results We found that all the stapled peptides were effective in inhibiting infection by all the primary HIV-1 isolates tested, with 50% inhibitory concentration toward viral replication (ICso) in the low micromolar range. NYAD-36 and NYAD-67 showed better antiviral activity than NYAD-66 did. We further evaluated the sensitivity of CRF01_AE and CRF07_BC Env-pseudotyped viruses to these stapled peptides in a single-cycle virus infectivity assay. As observed with the primary isolates, the ICs0s were in the low micromolar range, and NYAD-66 was less effective than NYAD-36 and NYAD-67. Conclusion Hydrocarbon-stapled peptides appear to have broad antiviral activity against the predominant HIV-1 viruses in China. This finding may provide the impetus to the rational design of peptides for future antiviral therapy.
基金This work was supported by the Key Program of China International Science and Technology Cooperation(No.2005DFA30070)National Natural Sciences Foundation of China(No.30271355)
文摘Background Human papillomaviruses (HPVs) can infect squamous or mucosal epithelia and cause cervical cancer or genital warts. Coinfection with multiple HPV types is a common finding of many epidemiological studies. Therefore, it is necessary to develop a vaccine, which can eradicate established HPV infections and prevent other HPV infections. In this study, we generated chimeric virus like particles (cVLPs) composed of HPV-6b L1, HPV-6b L2 and one artificial HPV-16 mE7 proteins. Methods The artificial HPV-16 mE7 gene was designed by codon modification, point mutation and gene shuffling then chemically synthesized and subcloned behind HPV-6b L2. HPV-6b L1 and L2-mE7 were expressed in insect cells by using Bac-to-Bac system. The generated cVLPs were purified by CsCI gradient ultracentrifuge and analyzed by immunoblot, electron microscope and haemagglutination assay. Results The HPV-6b L1 and L2-mE7 proteins were well expressed in insect cells and could selfassemble into cVLPs, whose diameter was about 55 nm and similar to that of HPV-6b L1/L2 VLPs. Intact cVLPs could be recognized by H6.M48 neutralizing monoclonal antibody and HPV-6b L2 polyclonal antibody, while the denatured cVLPs, but not the intact cVLPs, were reactive to HPV-16 E7 polyclonal antibody. HPV-6b LI/L2-mE7 cVLPs haemaggiutinated mouse erythrocytes as efficiently as HPV-6b L1/L2 VLPs did. Conclusions The insertion of the 158 amino acid HPV-16 mE7 protein behind L2 did not disrupt the correct assembling of cVLPs. The morphological characteristics and haemagglutinating activity of cVLPs were similar to those of HPV-6b LI/L2 VLPs. The cVLPs retained conformational B cell epitopes of HPV-6 VLPs and HPV-16 mE7 protein had an internal location in the cVLPs. Therefore, large modified E7 protein with higher immunogenicity could be incorporated into cVLPs by fusing to the C-terminus of L2, which would help to improve the therapeutic effects of LI/L2-E7 cVLPs.