One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as ...One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as reducing agents. The morphology and properties of Ni nanostructures were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), and vibrating sample magnetometer(VSM). It was found that the magnetic field strength, concentration of Ni ions,reaction time and temperature as well as p H values played key roles on formation, microstructures and magnetic properties of Ni nanowires. The optimal wires have diameter of ~200 nm and length up to ~200 μm. And their coercivity is ~260 Oe, which is much larger than the commercial Ni powders of 31 Oe. This work presents a simple, low-cost, environment-friendly and large-scale production approach to fabricate one-dimensional magnetic materials. The resulting materials may have potential applications in conductive filters, magnetic sensors and catalytic agents.展开更多
Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 ...Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.展开更多
Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. ...Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.展开更多
Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures...Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.展开更多
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends...We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.展开更多
Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which i...Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.展开更多
Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunc...Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure.展开更多
TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and ...TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.展开更多
The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance(LF-NMR)technology,and the mechanism of expanding swept volume was expl...The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance(LF-NMR)technology,and the mechanism of expanding swept volume was explained by oxygen spectrum nuclear magnetic resonance(17O-NMR)experiments and capillarity analysis.The results of the LF-NMR experiment show that the nano-sized oil-displacement agent iNanoW1.0 could increase the swept volume by 10%-20%on the basis of conventional water flooding,making water molecules get into the low permeable region with small pores that conventional water flooding could not reach.17O-NMR technique and capillary analysis proved that iNanoW1.0 nanoparticles could weaken the association of hydrogen bonds between water molecules,effectively change the structure of water molecular clusters,and thus increasing the swept volume in the low permeable region.The ability of weakening association of hydrogen bonds between water molecules of iNanoW1.0 nanoparticles increases with its mass fraction and tends to be stable after the mass fraction of 0.1%.展开更多
An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and...An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.展开更多
A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Comp...A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.展开更多
Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetr...Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.展开更多
The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine a...The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine animals. It is a carbohydrate polymer consisting of β-1,4-linked anhydro-D-glucose units with three hydroxyl groups per anhydroglucose unit(AGU). Cellulose-based materials have been used in food, industrial, pharmaceutical, paper, textile production, and in wastewater treatment applications due to their low cost, renewability,biodegradability, and non-toxicity. For water treatment in the oil and gas industry, cellulose-based materials can be used as adsorbents, flocculants, and oil/water separation membranes. In this review, the uses of cellulose-based materials for wastewater treatment in the oil & gas industry are summarized, and recent research progress in the following aspects are highlighted: crude oil spill cleaning, flocculation of solid suspended matter in drilling or oil recovery in the upstream oil industry, adsorption of heavy metal or chemicals, and separation of oil/water by cellulosic membrane in the downstream water treatment.展开更多
The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of ...The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of an antenna-coupled AlGaN/GaN high-electron-mobility-transistor(HEMT) terahertz detector are evaluated at temperatures elevated from 300 K to 473 K. Noise spectrum measurement and a simultaneous measurement of the source–drain conductance and the terahertz photocurrent allow for detailed analysis of the electrical characteristics, the photoresponse, and the noise behavior. The responsivity is reduced from 59 mA/W to 11 mA/W by increasing the detector temperature from 300 K to 473 K. However,the noise spectral density maintains rather constantly around 1–2 pA/Hz^(1/2) at temperatures below 448 K, above which the noise spectrum abruptly shifts from Johnson-noise type into flicker-noise type and the noise density is increased up to one order of magnitude. The noise-equivalent power(NEP) is increased from 22 pW/Hz^(1/2) at 300 K to 60 pW/Hz^(1/2) at 448 K mainly due to the reduction in mobility. Above 448 K, the NEP is increased up to 1000 pW/Hz^(1/2) due to the strongly enhanced noise. The sensitivity can be recovered by cooling the detector back to room temperature.展开更多
With the increasing use of fullerenes and their derivatives in a variety of fields, the toxicity and effects of fullerenes on humans and the environment have received considerable attention. In this study, the cytotox...With the increasing use of fullerenes and their derivatives in a variety of fields, the toxicity and effects of fullerenes on humans and the environment have received considerable attention. In this study, the cytotoxicity of fullerene derivative, C60(OH)x, on Tetrahymena pyriformis was investigated. Cell growth inhibition was evaluated by counting with an optical microscope, and the generation time was calculated. It was indicated that the fullerenols caused a dose-dependent growth inhibition of the cells. The morphologic change in the damaged macronucleus of cells was observed using a fluorescent microscope. Superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione reductase (GR) levels were also measured for Tetrahymena pyriformis, using conventional methods. The results showed that fullerenols could reduce GSH-PX and GR activities. But no noticeable difference in SOD ac- tivity was observed between the treated groups and the control group. This indicated that the antiproliferative effect of fullerenols might be mediated by the reduction in the activities of GSH-PX and GR of cells and the destruction of the macronucleus.展开更多
The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristi...The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.展开更多
Whereas theπ-πstacking interactions at oil/water interfaces can affect interfacial structures hence the interfacial properties,the underlying microscopic mechanism remains largely unknown.We reported an all-atom mol...Whereas theπ-πstacking interactions at oil/water interfaces can affect interfacial structures hence the interfacial properties,the underlying microscopic mechanism remains largely unknown.We reported an all-atom molecular dynamics(MD)simulation study to demonstrate how the Gemini surfactants with pyrenyl groups affect the interracial properties,structural conformations,and the motion of molecules in the water/n-octane/surfactant ternary systems.It is found that the pyrenyl groups tend to be vertical to the interface owing to theπ-πstacking interaction.Besides,a synergistic effect between theπ-πinteraction and steric hindrance is found,which jointly affects the coalescence of liquid droplets.Therefore,the existence of aromatic groups and a moderate number of surfactants helps to form microemulsion.This work provides a molecular understanding of Gemini surfactants with aromatic groups in microemulsion preparation and applications.展开更多
Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen...Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and sta- ble leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.展开更多
We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25 wt. % is used and characterized by scanning electron microscopy. ...We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25 wt. % is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, while the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.展开更多
We derive an exact expression for the transmission coefficient through an Aharonov-Bohm ring with a side-coupled quantum dot using the scattering-matrix approach. We show a sudden AB phase change by π as the quantum ...We derive an exact expression for the transmission coefficient through an Aharonov-Bohm ring with a side-coupled quantum dot using the scattering-matrix approach. We show a sudden AB phase change by π as the quantum dot is tuned across the resonance. The Aharonow-Bohm oscillation amplitude can be modulated effectively by tuning the quantum dot level, The transmission coefficient has an expression of the generalized Fano form with a complex Fano parameter q in the presence of the Aharonov-Bohm flux.展开更多
基金support of the National Basic Research Program of China(No.2006CB300406)Shanghai Science and Technology Grant(No:0752nm015)+2 种基金National Natural Science Foundation of China(No.50730008,20504021)Natural Science Foundation of Shanghai(No.09ZR1414800)Shanghai Applied Materials Collaborative Research Program(No:09520714400)
文摘One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as reducing agents. The morphology and properties of Ni nanostructures were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), and vibrating sample magnetometer(VSM). It was found that the magnetic field strength, concentration of Ni ions,reaction time and temperature as well as p H values played key roles on formation, microstructures and magnetic properties of Ni nanowires. The optimal wires have diameter of ~200 nm and length up to ~200 μm. And their coercivity is ~260 Oe, which is much larger than the commercial Ni powders of 31 Oe. This work presents a simple, low-cost, environment-friendly and large-scale production approach to fabricate one-dimensional magnetic materials. The resulting materials may have potential applications in conductive filters, magnetic sensors and catalytic agents.
基金supported by National Natural Science Foundation of China(No.5073000830772434)+2 种基金National Basic Research Program of China(No.2006CB3004006)Shanghai Science and Technology Research Foundation(No:09JC1400740001052nm05500)
文摘Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.
基金supported by the Hi-Tech Research and Development Program of China(No.2007AA03Z300)Shanghai-Applied Materials Research and Development fund(No.07SA10)+3 种基金National Natural Science Foundation of China(No.50730008)Shanghai Science and Technology Grant(No:0752nm015,09ZR1414800,1052nm05500)National Basic Research Program of China(No.2006CB300406)the fund of Defence Key Laboratory of Nano/Micro Fabrication Technology
文摘Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.
文摘Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.
基金Sponsored by the National Natural Science Foundation of China under Grant No 10804058, the Natural Science Foundation of Ningbo under Grant No 2009A610017, and the K. C. Wong Magna Fund in Ningbo University.
文摘We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)the Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure.
文摘TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.
基金Supported by the PetroChina Scientifc Research and Technological Development Project(2018A-0907).
文摘The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance(LF-NMR)technology,and the mechanism of expanding swept volume was explained by oxygen spectrum nuclear magnetic resonance(17O-NMR)experiments and capillarity analysis.The results of the LF-NMR experiment show that the nano-sized oil-displacement agent iNanoW1.0 could increase the swept volume by 10%-20%on the basis of conventional water flooding,making water molecules get into the low permeable region with small pores that conventional water flooding could not reach.17O-NMR technique and capillary analysis proved that iNanoW1.0 nanoparticles could weaken the association of hydrogen bonds between water molecules,effectively change the structure of water molecular clusters,and thus increasing the swept volume in the low permeable region.The ability of weakening association of hydrogen bonds between water molecules of iNanoW1.0 nanoparticles increases with its mass fraction and tends to be stable after the mass fraction of 0.1%.
基金supported by National Natural Science Foundation of China No.50730008Shanghai Science and Technology Grant No.0752nm015National Basic Research Program of China No.2006CB300406
文摘An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.
基金Project(cstc2020jcyj-msxm X0930) supported by the Natural Science Foundation of Chongqing,ChinaProject(KJQN201901522) supported by Technological Research Program of Chongqing Municipal Education Commission,ChinaProject(cx2020068) supported by the Venture&Innovation Support Program for Chongqing Overseas Returnees,China。
文摘A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.
文摘Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.
基金financially supported by PetroChina Scientific Research and Technology Development Project, China (2018A-0907, YGJ2019-11-01)the support from CFI and NSERC, Canada
文摘The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine animals. It is a carbohydrate polymer consisting of β-1,4-linked anhydro-D-glucose units with three hydroxyl groups per anhydroglucose unit(AGU). Cellulose-based materials have been used in food, industrial, pharmaceutical, paper, textile production, and in wastewater treatment applications due to their low cost, renewability,biodegradability, and non-toxicity. For water treatment in the oil and gas industry, cellulose-based materials can be used as adsorbents, flocculants, and oil/water separation membranes. In this review, the uses of cellulose-based materials for wastewater treatment in the oil & gas industry are summarized, and recent research progress in the following aspects are highlighted: crude oil spill cleaning, flocculation of solid suspended matter in drilling or oil recovery in the upstream oil industry, adsorption of heavy metal or chemicals, and separation of oil/water by cellulosic membrane in the downstream water treatment.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0100501)the National Natural Science Foundation of China(Grant Nos.61771466,61775231,and 61611530708)+1 种基金the Six Talent Peaks of Jiangsu Province,China(Grant No.XXRJ-079)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017372)
文摘The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of an antenna-coupled AlGaN/GaN high-electron-mobility-transistor(HEMT) terahertz detector are evaluated at temperatures elevated from 300 K to 473 K. Noise spectrum measurement and a simultaneous measurement of the source–drain conductance and the terahertz photocurrent allow for detailed analysis of the electrical characteristics, the photoresponse, and the noise behavior. The responsivity is reduced from 59 mA/W to 11 mA/W by increasing the detector temperature from 300 K to 473 K. However,the noise spectral density maintains rather constantly around 1–2 pA/Hz^(1/2) at temperatures below 448 K, above which the noise spectrum abruptly shifts from Johnson-noise type into flicker-noise type and the noise density is increased up to one order of magnitude. The noise-equivalent power(NEP) is increased from 22 pW/Hz^(1/2) at 300 K to 60 pW/Hz^(1/2) at 448 K mainly due to the reduction in mobility. Above 448 K, the NEP is increased up to 1000 pW/Hz^(1/2) due to the strongly enhanced noise. The sensitivity can be recovered by cooling the detector back to room temperature.
基金Supported by the Zhejiang Province Natural Science Foundation (No.Y505325) and MOST973 program (No. 2006CB705600)
文摘With the increasing use of fullerenes and their derivatives in a variety of fields, the toxicity and effects of fullerenes on humans and the environment have received considerable attention. In this study, the cytotoxicity of fullerene derivative, C60(OH)x, on Tetrahymena pyriformis was investigated. Cell growth inhibition was evaluated by counting with an optical microscope, and the generation time was calculated. It was indicated that the fullerenols caused a dose-dependent growth inhibition of the cells. The morphologic change in the damaged macronucleus of cells was observed using a fluorescent microscope. Superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione reductase (GR) levels were also measured for Tetrahymena pyriformis, using conventional methods. The results showed that fullerenols could reduce GSH-PX and GR activities. But no noticeable difference in SOD ac- tivity was observed between the treated groups and the control group. This indicated that the antiproliferative effect of fullerenols might be mediated by the reduction in the activities of GSH-PX and GR of cells and the destruction of the macronucleus.
文摘The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.
基金supported by National Natural Science Foundation of China(21878078,22108022)PetroChina Scientific Research and Technology Development Project(2018A-0907)。
文摘Whereas theπ-πstacking interactions at oil/water interfaces can affect interfacial structures hence the interfacial properties,the underlying microscopic mechanism remains largely unknown.We reported an all-atom molecular dynamics(MD)simulation study to demonstrate how the Gemini surfactants with pyrenyl groups affect the interracial properties,structural conformations,and the motion of molecules in the water/n-octane/surfactant ternary systems.It is found that the pyrenyl groups tend to be vertical to the interface owing to theπ-πstacking interaction.Besides,a synergistic effect between theπ-πinteraction and steric hindrance is found,which jointly affects the coalescence of liquid droplets.Therefore,the existence of aromatic groups and a moderate number of surfactants helps to form microemulsion.This work provides a molecular understanding of Gemini surfactants with aromatic groups in microemulsion preparation and applications.
基金financially supported by the Supporting Foundation of the Ministry of Education (Grant 62501040303)the Pre-research Fund (Grants 9140A26020313JW03371, 9140A260204 14JW03412)the New Century Excellent Talents Support Program from the Ministry of Education of China (Grant NCET-10-0583)
文摘Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and sta- ble leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.
文摘We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25 wt. % is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, while the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.
基金Supported by the National Natural Science Foundation of China under Grant No 10347134, and the Youth Foundation of Ningbo under Grant No 2003A62005.
文摘We derive an exact expression for the transmission coefficient through an Aharonov-Bohm ring with a side-coupled quantum dot using the scattering-matrix approach. We show a sudden AB phase change by π as the quantum dot is tuned across the resonance. The Aharonow-Bohm oscillation amplitude can be modulated effectively by tuning the quantum dot level, The transmission coefficient has an expression of the generalized Fano form with a complex Fano parameter q in the presence of the Aharonov-Bohm flux.