This paper reports that the detection to the protein in microarray format is carried out by oblique-incidence reflectivity difference (OI-RD) analysis without any labelling agents. The OI-RD intensities not only dep...This paper reports that the detection to the protein in microarray format is carried out by oblique-incidence reflectivity difference (OI-RD) analysis without any labelling agents. The OI-RD intensities not only depend on the protein structure, but also vary with the protein concentration. The results indicate that this method should have potential application in detection of biochemical processes. The high throughout and in situ detection can be achieved by this method with further improving of the experimental system.展开更多
Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DN...Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DNA sensor was employed to rapidly detect DNA damage induced by polystyrene nanosphere (PSNS) suspensions. In the sensor, a double-stranded DNA film was assembled on a semiconductor electrode, and a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was used as the photoelectrochemical signal indicator. After the DNA-modified electrode was exposed to 2.0 mg/mL PSNS suspension, photocurrent of DNA-bound Ru(bpy)2(dppz)2+ decreased by about 20%. The decrease is attributed to the chemical damage of DNA and consequently less binding of Ru(bpy)2(dppz)2+ molecules to the electrode. Gel electrophoresis of DNA samples incubated with PSNS suspension confirmed DNA damage after the chemical exposure. However, in both photoelectrochemical and gel electrophoresis experiments, extensively washed PSNS did not induce any DNA damage, and the supernatant of PSNS suspension exhibited comparable DNA damage as the unwashed PSNS suspension. Furthermore, UV-visible absorption spectrum of the supematant displayed a pattern very similar to that of styrene oxide (SO), a compound which has been shown to induce DNA damage by forming covalent DNA adducts. It is therefore suggested that styrene oxide and other residual chemicals in the PSNS may be responsible for the observed DNA damage. The results highlight the importance of full characterization of nanomaterials before their toxicity study, and demonstrate the utility of photoelectrochemical DNA sensors in the rapid assessment of DNA damage induced by chemicals and nanomaterials.展开更多
A chiral complex of (R,R)-Pd was prepared by reaction of optically pure (R,R)-bis(pyrrol-2-ylmethyl-eneamino) cyclohexane ligand with Pd(OAc)2·2H2O under the base condition at room temperature. The weak intermole...A chiral complex of (R,R)-Pd was prepared by reaction of optically pure (R,R)-bis(pyrrol-2-ylmethyl-eneamino) cyclohexane ligand with Pd(OAc)2·2H2O under the base condition at room temperature. The weak intermolecular C-H···Pd interaction was found to be responsible for the homochiral M helix for-mation of the neutral,chiral,mononuclear (R,R)-Pd in the crystal packing.展开更多
基金Project supported by the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No L3FX051W)
文摘This paper reports that the detection to the protein in microarray format is carried out by oblique-incidence reflectivity difference (OI-RD) analysis without any labelling agents. The OI-RD intensities not only depend on the protein structure, but also vary with the protein concentration. The results indicate that this method should have potential application in detection of biochemical processes. The high throughout and in situ detection can be achieved by this method with further improving of the experimental system.
基金supported by the National Basic Research Program of China (2011CB936001)the National Natural Science Foundation of China (20825519, 20890112 & 20921063)Beijing Municipal Education Committee (KZ201110005006)
文摘Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DNA sensor was employed to rapidly detect DNA damage induced by polystyrene nanosphere (PSNS) suspensions. In the sensor, a double-stranded DNA film was assembled on a semiconductor electrode, and a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was used as the photoelectrochemical signal indicator. After the DNA-modified electrode was exposed to 2.0 mg/mL PSNS suspension, photocurrent of DNA-bound Ru(bpy)2(dppz)2+ decreased by about 20%. The decrease is attributed to the chemical damage of DNA and consequently less binding of Ru(bpy)2(dppz)2+ molecules to the electrode. Gel electrophoresis of DNA samples incubated with PSNS suspension confirmed DNA damage after the chemical exposure. However, in both photoelectrochemical and gel electrophoresis experiments, extensively washed PSNS did not induce any DNA damage, and the supernatant of PSNS suspension exhibited comparable DNA damage as the unwashed PSNS suspension. Furthermore, UV-visible absorption spectrum of the supematant displayed a pattern very similar to that of styrene oxide (SO), a compound which has been shown to induce DNA damage by forming covalent DNA adducts. It is therefore suggested that styrene oxide and other residual chemicals in the PSNS may be responsible for the observed DNA damage. The results highlight the importance of full characterization of nanomaterials before their toxicity study, and demonstrate the utility of photoelectrochemical DNA sensors in the rapid assessment of DNA damage induced by chemicals and nanomaterials.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20333080, 20332040, 20472091, 50473048, 20472092 and 20403025)the Ministry of Science and Technology of China (Grant Nos. 2003CB716802, 2004CB719903, 2006CB806105 and G2007CB808004)the Bureau for Basic Research of the Chinese Academy of Sciences
文摘A chiral complex of (R,R)-Pd was prepared by reaction of optically pure (R,R)-bis(pyrrol-2-ylmethyl-eneamino) cyclohexane ligand with Pd(OAc)2·2H2O under the base condition at room temperature. The weak intermolecular C-H···Pd interaction was found to be responsible for the homochiral M helix for-mation of the neutral,chiral,mononuclear (R,R)-Pd in the crystal packing.