期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology 被引量:6
1
作者 Xiaojing Wan Ze Yu +6 位作者 Wenming Tian Fuzhi Huang Shengye Jin Xichuan Yang Yi-Bing Cheng Anders Hagfeldt Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期8-15,I0001,共9页
All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high... All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices. 展开更多
关键词 All-inorganic perovskite solar cells CsPbBr3 Morphology control Solution-processed Stability
下载PDF
Defects engineering for high-performance perovskite solar cells 被引量:4
2
作者 Feng Wang Sai Bai +2 位作者 Wolfgang Tress Anders Hagfeldt Feng Gao 《npj Flexible Electronics》 SCIE 2018年第1期175-188,共14页
Metal halide perovskites have achieved great success in photovoltaic applications during the last few years.The solar to electrical power conversion efficiency(PCE)of perovskite solar cells has been rapidly improved f... Metal halide perovskites have achieved great success in photovoltaic applications during the last few years.The solar to electrical power conversion efficiency(PCE)of perovskite solar cells has been rapidly improved from 3.9%to certified 22.7%due to the extensive efforts on film deposition methods,composition and device engineering.Further investigation on eliminating the defect states in perovskite absorbers is necessary to push forward the PCE of perovskite solar cells approaching the Shockley-Queisser limit.In this review,we summarize the defect properties in perovskite films and present methodologies to control the defects density,including the growth of large size crystals,photo-curing method,grain boundary and surface passivation,and modification of the substrates.We also discuss the defects-related stability and hysteresis issues and highlight the current challenges and opportunities in defects control of perovskite films. 展开更多
关键词 PEROVSKITE ABSORBER APPROACHING
原文传递
Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics 被引量:4
3
作者 Yuhang Liu Bitao Dong +2 位作者 Anders Hagfeldt Jingshan Luo Michael Graetzel 《SmartMat》 2021年第1期33-37,共5页
Perovskite solar cells(PSCs)have attracted intense attention based on their high power conversion efficiency and low production cost.However,due to the polycrystalline nature and the intrinsic hydrophilicity of the me... Perovskite solar cells(PSCs)have attracted intense attention based on their high power conversion efficiency and low production cost.However,due to the polycrystalline nature and the intrinsic hydrophilicity of the metal halide perovskite moieties,the photovoltaic performance of PSCs is largely limited by defects within the polycrystalline perovskites and the sensitivity to moisture.In this perspective,we focus on the chemically tailored interface materials to passivate the defects and improve the moisture stability of PSCs.First,we provide a brief overview of various molecular interface modifiers.Thereafter we provide examples from our recent work on organic ammonium halide‐based passivation materials as representatives to illustrate the design strategies and the modification effects.In the end,we shed light on the future devel-opment of organic ammonium halides for applications in PSCs. 展开更多
关键词 organic ammonium halide perovskite solar cell surface modification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部