Using a previous model, which was developed to describe the light-induced creation of the defect density in the a-Si:H gap states, we present in this work a numerical modelling of the photodegradation effect in the a...Using a previous model, which was developed to describe the light-induced creation of the defect density in the a-Si:H gap states, we present in this work a numerical modelling of the photodegradation effect in the a-Si:H p–i–n solar cell under continuous illumination. We first considered the simple case of a monochromatic light beam with a wavelength λ between 530–540 nm non uniformly absorbed, then the global standard solar spectrum(AM1.5) illumination is taken into account. The photodegradation is analysed on the basis of the resulting changes in the free carrier's densities, recombination rate, band structure, electrical potential and field, space charge, and current densities. Changes in the cell's external parameters: the open circuit voltage Voc, the short circuit current density Jsc, the fill factor FF and the maximum power density Pmaxare also presented.展开更多
Using a previous model, which was developed to describe the light-induced creation ofthe defect density in the a-Si:H gap states, we present in this work a computer simulation of the a-Si:H p-i-n solar cell behavior...Using a previous model, which was developed to describe the light-induced creation ofthe defect density in the a-Si:H gap states, we present in this work a computer simulation of the a-Si:H p-i-n solar cell behavior under continuous illumination. We have considered the simple case of a monochromatic light beam nonuniformly absorbed. As a consequence of this light-absorption profile, the increase of the dangling bond density is assumed to be inhomogeneous over the intrinsic layer (i-layer). We investigate the internal variable profiles during illumination to understand in more detail the changes resulting from the light-induced degradation effect. Changes in the cell external parameters including the open circuit voltage, Voc, the short circuit current density, Jsc, the fill factor, FF, and the maximum power density, Pmax, are also presented. This shows, in addition, the free carrier mobility influence. The obtained results show that Voc seems to be the less affected parameter by the light-induced increase of the dangling bond density. Moreover, its degradation is very weak-sensitive to the free carrier mobility. Finally, the free hole mobility effect is found to be more important than that of electrons in the improvement of the solar cell performance.展开更多
文摘Using a previous model, which was developed to describe the light-induced creation of the defect density in the a-Si:H gap states, we present in this work a numerical modelling of the photodegradation effect in the a-Si:H p–i–n solar cell under continuous illumination. We first considered the simple case of a monochromatic light beam with a wavelength λ between 530–540 nm non uniformly absorbed, then the global standard solar spectrum(AM1.5) illumination is taken into account. The photodegradation is analysed on the basis of the resulting changes in the free carrier's densities, recombination rate, band structure, electrical potential and field, space charge, and current densities. Changes in the cell's external parameters: the open circuit voltage Voc, the short circuit current density Jsc, the fill factor FF and the maximum power density Pmaxare also presented.
文摘Using a previous model, which was developed to describe the light-induced creation ofthe defect density in the a-Si:H gap states, we present in this work a computer simulation of the a-Si:H p-i-n solar cell behavior under continuous illumination. We have considered the simple case of a monochromatic light beam nonuniformly absorbed. As a consequence of this light-absorption profile, the increase of the dangling bond density is assumed to be inhomogeneous over the intrinsic layer (i-layer). We investigate the internal variable profiles during illumination to understand in more detail the changes resulting from the light-induced degradation effect. Changes in the cell external parameters including the open circuit voltage, Voc, the short circuit current density, Jsc, the fill factor, FF, and the maximum power density, Pmax, are also presented. This shows, in addition, the free carrier mobility influence. The obtained results show that Voc seems to be the less affected parameter by the light-induced increase of the dangling bond density. Moreover, its degradation is very weak-sensitive to the free carrier mobility. Finally, the free hole mobility effect is found to be more important than that of electrons in the improvement of the solar cell performance.