期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Scale dependence of plant species richness and vegetation-environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China 被引量:13
1
作者 XiaoAn ZUO ShaoKun WANG +1 位作者 XueYong ZHAO Jie LIAN 《Journal of Arid Land》 SCIE CSCD 2014年第3期334-342,共9页
Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however the information on how dune stabilization influences the spatial scale dependence of plant diversity is still la... Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however the information on how dune stabilization influences the spatial scale dependence of plant diversity is still lacking. In this study, we measured the plant species richness, soil properties and altitude across four spatial scales (1, 10, 100 and 1,000 m2) at three different dune stabilization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. We also examined the relationships between plant species richness, community composition and environmental factors along the gradient of dune stabilization. Our results showed that plant species richness increased with the increase of spatial scales in each dune stabilization stage, as well as with the increase of dune stabilization degrees. Canonical correspondence analysis (CCA) showed that plant distribu- tions in the processes of dune stabilization were determined by the combined environmental gradient in relation to soil organic carbon (SOC), total nitrogen (TN), carbon/nitrogen (C/N), pH, electrical conductivity (EC), soil water content (SWC), fine sand (FS), very fine sand (VFS), silt and clay (SC), and altitude. Plant species richness was significantly and positively correlated to SOC and TN in mobile dune, and significantly and positively correlated to SOC, TN, C/N, VFS and SC in semi-fixed dune. However, no significant correlation between plant species richness and environmental factors was observed in fixed dune. In addition, plant species richness in different dune stabili- zation stages was also determined by the combined gradient of soil properties and altitude. These results suggest that plant species richness has obvious scale dependence along the gradient of dune stabilization. Soil resources depending on dune habitats and environmental gradients caused by dune stabilization are important factors to de- termine the scale dependence of species diversity in sand dune ecosystems. 展开更多
关键词 CCA environmental gradient sandy land ecosystem spatial scale dependence species diversity
下载PDF
Characteristics of deep drainage and soil water in the mobile sandy lands of Inner Mongolia, northern China 被引量:5
2
作者 Xin Ping LIU Yu Hui HE +6 位作者 Xue Yong ZHAO Tong Hui ZHANG La Mei ZHANG Yun Hua MA Shu Xia YAO Shao Kun WANG Shui Lian WEI 《Journal of Arid Land》 SCIE CSCD 2015年第2期238-250,共13页
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ... Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region. 展开更多
关键词 mobile sandy lands rainfall characteristics deep drainage soil water content
下载PDF
Impact of sand burial on maize(Zea mays L.)productivity and soil quality in Horqin sandy cropland,Inner Mongolia,China 被引量:1
3
作者 WANG Shaokun ZHAO Xueyong +3 位作者 ZHAO Halin LIAN Jie LUO Yongqing YUN Jianying 《Journal of Arid Land》 SCIE CSCD 2016年第4期569-578,共10页
Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm)... Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm), moderate (8-12 cm) and deep (15-20 cm) sand burials, and no sand burial (control, CK), in a typical agro-pastoral transitional zone in Naiman Banner of eastern Inner Mongolia. The aim of this study was to assess the impacts of sand burial on maize (Zea rnays L.) productivity and the soil quality along a gradient of burial depths. Results showed that there was a strong negative effect of sand burial on maize productivity and soil quality, which significantly declined (P〈0.05) under moderate and deep sand burial treatments. In comparison with the CK, the maize yield and above-ground biomass reduced by 47.41% and 39.47%, respectively. The soil silt and clay, soil water, soil organic carbon and total nitrogen contents under deep sand burial decreased by 67.85%, 40.32%, 86.52% and 82.11%, respectively, while microbial biomass carbon, microbial abundance and enzyme activity decreased by 89.78%, 42.28%-79.66% and 69.51%-97.71%, respectively. There was no significant effect on crop productivity and soil quality with shallow sand burial treatment. The correlations analysis showed that there was significant positive correlations of both maize yield and above-ground biomass with soil silt and clay, soil organic carbon and total nitrogen contents, pH, electrical conductivity, soil water content, microbial abundance and biomass and all tested soil enzyme activities. Stepwise regression analysis indicated that soil water and total nitrogen contents, urease, cellobiohydrolase and peroxidase activities were key determining factors for maize productivity. This combination of factors explains reason of the decreased maize productivity with deep sand burial. We found that degradation of cropland as a result of sand burial changed soil physical-chemical properties and soil enzyme activities in the plow layer, and decreased overall maize productivity. Furthermore, decreased soil enzyme activity was a better indicator to predict sandy cropland degradation. 展开更多
关键词 sand burial soil quality enzyme activity maize productivity sandy cropland
下载PDF
Effects of dune stabilization on vegetation characteristics and soil properties at multiple scales in Horqin Sandy Land,Northern China
4
作者 XiaoAn Zuo XueYong Zhao +3 位作者 ShaoKun Wang Xin Zhou Peng Lv Jing Zhang 《Research in Cold and Arid Regions》 CSCD 2015年第1期40-49,共10页
Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however information on how dune stabilization influences vegetation and soil at different spatial scales is still lackin... Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however information on how dune stabilization influences vegetation and soil at different spatial scales is still lacking. In this study, we measured vegetation characteristics and soil properties across three spatial scales (10, 100 and 1,000 m^2) along gradient dune stabilization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. Vegetation cover over all scales significantly increased with degree of dune stabilization, as well as species richness and C/N ratio at 10 m^2 scale. Species richness significantly increased with the increase in measured scales at each stage of dune stabilization and was higher in fixed dune than that in mobile dune and semi-fixed dune at 100 and 1,000 m^2 scales. Over all scales, aboveground biomass was lower in mobile dune than that in semi-fixed dune and fixed dune, and soil organic C, total N, EC, very fine sand and silt + clay contents were higher in fixed dune than those in mobile dune and semi-fixed dune. These results suggest that along the gradient dune stabilization, species richness has strong spatial scale-dependence, but vegetation cover, aboveground biomass and soil properties is generally scale independent (i.e., the pattern of response is consistent across all scales). Effect of dune stabilization on vegetation and soil over all spatial scales results in the positive correlation among vegetation cover, species richness, biomass, soil organic C, total N, C/N, EC, very fine sand and silt + clay along the gradient dune stabilization. In addition, species response to dune stabilization. Thus, the monitoring strategies diversity in semiarid dune ecosystems. richness at the smallest scale (10 m^2) has more sensitive at small scales are essential to detect changes of species 展开更多
关键词 dune stabilization sand dune scale dependence soil properties species diversity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部