Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to p...Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in 2 ≤ Ma ≤ 5 and 0 km ≤ H ≤ 30 km. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where 99. 5% of the angle-of-attack estimations are within the error band ±0. 2°. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy.展开更多
文摘Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in 2 ≤ Ma ≤ 5 and 0 km ≤ H ≤ 30 km. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where 99. 5% of the angle-of-attack estimations are within the error band ±0. 2°. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy.