In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of...In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.展开更多
基金the National Key Research and Development Project(No.2018YFC1503206)the National Natural Science Foundation of China(No.41674046).
文摘In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.